Vol.2, No 3, 2001 pp. 141 - 148
UDC 530.145

SOME PROBLEMS OF LOW-DIMENSIONAL PHYSICS AND NANOPHYSICS
Yuri Kornyushin
Maître Jean Brunschvig Research Unit
59/39 King George Street, Jerusalem 94261, Israel

Abstract. Fermi and kinetic energy are usually calculated in periodic boundary conditions model, which is not self-consistent for low-dimensional problems, where particles are confined. Thus for confined particles the potential box model was used self-consistently to calculate Fermi and kinetic energies in 3-, 2-, and 1-dimensional cases. This approach is much more logical and self-consistent. Then the conditions for neglecting dimensions, that is conditions under which the movement of particles in the box could be considered as 2- and 1- dimensional, were derived. Some problems on electronic collective oscillations in Fullerene molecules and carbon nanotube were included also.

NEKI PROBLEMI FIZIKE MALOG BROJA DIMENZIJA I NANOFIZIKE
Fermi i kinetička energija se obično izračunavaju u modelu sa periodičnim graničnim uslovima, koji nije konzistentan sa nisko-dimenzionalnim problemima, gde su čestice konfinirane. Zbog toga je za konfinirane čestice iskorišćen model potencijalne kutije za konzistentno izračunavanje Fermi i kinetičke energije u 3,2 i 1 dimenzionalnom slučaju. Ovaj prilaz je mnogo logičniji i samo-usaglašen. Onda su izvedeni uslovi za zanemarivanje dimenzija, odnosno uslovi pod kojima kretanje čestica u kutiji može biti razmatrano kao 2 i 1-dimenzionalno. Neki problemi elektronskih kolektivnih oscilacija kod molekula Fulerena i ugljenikovih nanotuba su takođe uključeni.