Vol.2, No 3, 2001 pp. 141 - 148
UDC 530.145
SOME PROBLEMS OF LOW-DIMENSIONAL PHYSICS
AND NANOPHYSICS
Yuri Kornyushin
Maître Jean Brunschvig Research Unit
59/39 King George Street, Jerusalem 94261, Israel
Abstract. Fermi and kinetic energy are usually calculated in periodic
boundary conditions model, which is not self-consistent for low-dimensional
problems, where particles are confined. Thus for confined particles the
potential box model was used self-consistently to calculate Fermi and kinetic
energies in 3-, 2-, and 1-dimensional cases. This approach is much more
logical and self-consistent. Then the conditions for neglecting dimensions,
that is conditions under which the movement of particles in the box could
be considered as 2- and 1- dimensional, were derived. Some problems on
electronic collective oscillations in Fullerene molecules and carbon nanotube
were included also.
NEKI PROBLEMI FIZIKE MALOG BROJA DIMENZIJA
I NANOFIZIKE
Fermi i kinetička energija se obično izračunavaju u modelu sa periodičnim
graničnim uslovima, koji nije konzistentan sa nisko-dimenzionalnim problemima,
gde su čestice konfinirane. Zbog toga je za konfinirane čestice iskorišćen
model potencijalne kutije za konzistentno izračunavanje Fermi i kinetičke
energije u 3,2 i 1 dimenzionalnom slučaju. Ovaj prilaz je mnogo logičniji
i samo-usaglašen. Onda su izvedeni uslovi za zanemarivanje dimenzija, odnosno
uslovi pod kojima kretanje čestica u kutiji može biti razmatrano kao 2
i 1-dimenzionalno. Neki problemi elektronskih kolektivnih oscilacija kod
molekula Fulerena i ugljenikovih nanotuba su takođe uključeni.