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Abstract. Fermi and kinetic energy are usually calculated in periodic boundary conditions
model, which is not self-consistent for low-dimensional problems, where particles are
confined. Thus for confined particles the potential box model was used self-consistently to
calculate Fermi and kinetic energies in 3-, 2-, and 1-dimensional cases. This approach is
much more logical and self-consistent. Then the conditions for neglecting dimensions, that
is conditions under which the movement of particles in the box could be considered as 2-
and 1- dimensional, were derived. Some problems on electronic collective oscillations in
Fullerene molecules and carbon nanotube were included also.

1. FERMI AND KINETIC ENERGIES

To calculate Fermi and Kinetic energies the periodic boundary conditions model is
used as a rule [1]. This model is rather adequate for a bulk solid. But when the motion of
the particles is confined, the periodic boundary conditions model does not look like a
proper one. More adequate in this case is the potential box model. When the potential box
is infinitely deep, zero boundary conditions on the borders of the box are realized, thus
leading to the zero boundary conditions model (ZBCM).

1.1. Fermi and Kkinetic energies in 3-d ZBCM

In ZBCM an ensemble of free particles, confined in an infinitely deep potential box,
is considered [1]. The Schrodinger equation for the wave function y(x,y,z) is as follows
(provided the value of the potential in the box is zero):

—(h2/2m)A\V(x,y,z) = E\u(x,y,z), (l)

where m is the mass of the particle and h is the Planck constant divided by 2.
The wave functions are [1]:

vy (x,y,2) = (8/abc)[sin(nv,x/a)][sin(nv,y/b)][sin(nv.z/c)]. v;=1, 2, 3, ... 2)
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The components of the wave vectors are [1] k; = nv;/a;; a, b and c are the sizes of
the box andi=x, y,z;a,=a,a,=b,and a. = c.
The energy levels are [1]:

E() = (1 12m)[(vi/a)’ + (v,/b)* + (v./c)]. (3)

The energy of the ground state is not zero: Ey = (R 2m)[(1/a%) + (1/b%) + (1/c%)],
but it is rather small when a, b, and c are quite large. The energy levels in ZBCM
could be written as

E®v) = (x® B*2mV*7 )2, 4)

where ¥ = abc and v' = [(V'"/a)v,]* + [(V""1b)v,]* + (VP /e)v.].

When N = nV confined particles fill in the levels (for spin 1/2 each level is occupied
by two particles), they reach in the process of filling the limiting value of v, vg. As v; are
positive numbers only (see Eq. (2)), one has only 1/8 fraction of the incomplete sphere
(in the v; space, excluding planes corresponding to v; = 0) of a radius vg to be filled in.
This yields the total number of the states filled being equal to (/3)ve> — (W/2)ve” (as v; > 0
only and v; = 0 does not exist as was pointed out above). They are all occupied by the
particles in consideration. For N much larger than unity (which is a regular case) one has

(/3 =nV, or ve = 3nV/m)">. (5)
Eqgs. (4,5) yield for the Fermi energy following expression:
Er = E(ve) = (B*2m)(3n*n)*">. (6)

Eq. (6) yields a well-known result [1].

When one has # particles in a unit volume, the Fermi energy of a system
practically is Ep = (h°/2m)(3n™n)*”. If dn particles are added, the increase in the
energy of a system is (%%/2m)(3n’n)* dn. As the potential energy in the box is zero,
the kinetic energy of a system is equal to the total energy. The total energy (per unit
volume) is the integral of the last expression on 1 from 0 to n. So we have:

T=0.6NEy. (7
Eq. (7) also yields a well-known result [1].

1.2. Fermi and Kkinetic energies in 2-d ZBCM
In 2-d case Eq. (4) should be written as follows:
E(v) = (n* B*2mS)V%, (8)
where S = ab and v* = [(S"*/a)v,])* + [(S"*/b)v,]".

In 2-d case only 1/4 part of the disk (in the v; space) is relevant because v; are
positive numbers only. Then, instead of (n/3)vg” = nV, one has (W/2)ve> = N = n,S = nV (n,
is a number of the confined particles per unit area). Instead of vy = (3n¥/m)"” one has
Ve = (2n,S/m)"%. One should also take into account that the third (neglected) direction of a

size 8 — 0 yields (according to Eq. (3)) the following contribution to the energy of a
system: E(8) = (nh)*/2m&’. So the Fermi energy is as follows
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Er = E(ve) + E(8) = (H*/2m)[2mn, + (1/8)*]. 9)

Eq. (9) was also derived for the case of N being much larger than unity. The term
n/8% in Eq. (9) is a very essential one when & is small.
The kinetic energy in 2-d case is as follows:

T= (h*2m)[nNn, + (n/8)*N]. (10)

The last term (proportional to N/&%) in the right-hand part of Eq. (10), is very essential.

1.3. Fermi and Kkinetic energies in 1-d ZBCM
In 1-d case Eq. (4) should be written as follows:
E(v) = (x* B*2ma*)V*. (11)

In 1-d case only half of the double length (in the v space) is relevant because of the
positive v numbers only. Then, instead of (1t/3)vp3 = nV one has 2vg = N = n;l (n; is the
number of the confined particles per unit length), so vg = 0.5/, and

Er = E(vg) + E(8) + EQ@max) = (W2m)[(mn)/2) + (11/8)* + (T/81max) . (12)

Eq. (12) was also derived for the case of N being much larger than unity. Two last terms in
the right-hand part of Eq. (12) represent the contribution of the neglected dimensions to the
energy of a system (8, is the larger size of the neglected dimensions).

The kinetic energy in 1-d case is as follows:

T=(T*R*2m)N[(n2/12) + (1/8%) + (1/8 )’ ]- (13)

The contribution of the neglected dimensions is very essential.

1.4. In a potential well of a finite depth all the energy levels
(including the Fermi energy) are lower than in the well of an infinite depth

The equations for the wave vectors k; in a finite potential box is as follows [2]
kua; + 2arcsin[fik/2mU) "] = v, vi=1,2,3, ..., (14)

where U is the potential depth.

As Eq. (14) has an additional positive term in the left-hand part of it, one can see
that corresponding k; and E(v;) = (7ik;*/2m are smaller than in ZBCM. The model of a
potential box of a finite depth yields lower (comparatively to ZBCM) energy levels,
and the Fermi energy in this model is also lower.

It is worthwhile to note that the finite depth of a box leads to non-zero boundary
conditions from which follows that the wavelength of each state is larger (comparative to
the infinite depth model), and corresponding wave vector and energy are smaller.
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2. CRITERIA FOR LOW-DIMENSIONAL MOVEMENT
2.1. A criterion for 2-d movement

Let one of the dimensions is small: ¢ = 6 — 0. The first excited energy level,
corresponding to this direction in the ZBCM is 2n*h*/md” (see Eq. (3)). When this
quantity is larger than 2-d Fermi energy (Eq. (9)):

2K m&” > (h*2m)[(21ng) + (1/8)7], (15)

the movement could be considered as a 2-d one.
Using Eq. (15) and taking into account that the surface density of the particles
n, = nd, one could write
8 < (3n/2ny)"?, or & < (3n/2n)". (16)

For n = (37/2)x10"> cm™ we have & < 10~ cm. One should say that it is quite a
considerable value.

2.2. A criterion for 1-d movement

When two dimensions are small, and the first excited energy level of the largest of the
small dimensions 8,y is 274 /M may’, and it is larger than 1-d Fermi energy (see Egs.
(3,12):

2T M e > (B22m)[(mn/2) > + (1/8) + (/S mar) ], (17

then the movement could be considered as a 1-d one.
From Eq. (17) follows that

Smax < [12/(4 + 8n,/)]"78. (18)

Taking into account that the linear density of the particles n; = ndd.x, one could write
Eq. (18) for the case §,,,x = 0 in the following form:

§<2"n', (19)

For n=2"*x10" cm™ we have & < 107 cm. That is a very considerable value.

3. FULLERENE MOLECULE

Nuclear liquid drop model was applied rather successfully to a series of nanoobjects.
Metallic clusters and fullerene molecules were considered in [3,5]. Carbon nanotubes and
carbon peapods were regarded in [4,5]. Here some problems in this field will be
formulated. First of all a short introduction to the subject will be given.

Spherically shaped Cq (fullerene) molecule has a diameter of 2R,= 0.7065 nm at 110
K. The electronic configuration of the constituent carbon atoms is 1s22522p2. In Cgp, we
can take the view that the two 1s electrons of each atom belong to the core (forming the
ion itself), two 2s electrons form the molecular bonds, and two 2p electrons are collective
or free. We model Cgy molecule by assuming that N = 60 ions are situated on the sphere
of radius Ry, their charge eZN (e>0 is electron charge, Z=2) being distributed
homogeneously on the surface of the sphere. Neither the collective electrons nor the core
ions could be found inside the sphere. The collective electrons cannot penetrate inside the
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sphere as they repel each other. This feature distinguishes regular metallic clusters and
fullerene molecules. We also assume that the charge of Ny= 120 collective electrons —e/N;is
distributed homogeneously in a spherical layer R, < r < R. The electrostatic potential arising
from the collective electrons can be obtained as a solution of the Poisson's equation:

A@(r) = —4mp(r), (20)

where p is the charge density. It is related to the density of the collective electrons n
given by
n=3N/4n(R’ - R/). #2))

Now let us formulate several problems in the topic.

3.1. Electrostatic energy during dipole oscillation
of the electronic cloud as a whole

Let us imagine that we fill the interior of the sphere with positive and negative electric
charges of the same density as in the spherical layer. This does not change real electrostatic
potential and the energy of the system considered. Total (real plus imaginary) negative
charge produces, according to the Poisson's equation (Eq. (20)), the following potential
inside the fullerene molecule:

O(r) = 9(0) + [eN/2(R* = R)]r’. (22)
Total (real plus imaginary) positive charge of the fullerene molecule is
q, = eN/R /(R = R/). (23)

When total negative charge is shifted relative to the total positive charge by a distance s,
the change in electrostatic energy is

W=eNP[R2(R* - R7) s> (24)
During oscillations, when s(#) = sosin ¢, the time-averaged value of W is

(Wy = N7 [RP AR — R7) 1s0". (25)

3.2. The kinetic energy of the dipole oscillations
of the electronic cloud as a whole

Let us assume that the displacements inside the electronic cloud u are directed along
the z-axis and:

u(r,t) = [(r = R)/R — R,)]sosinay 1. (26)

At r = R we have u = 0, and at » = R we have u = s¢sinw,¢. The local velocity v is
directed along the z-axis also and,

v(r,t) = u(r,1)/ot = [(r — R)/(R — R))]0ysocosoyt. 27)

Time-averaged value of kinetic energy is equal to the integral over the volume of the
electronic cloud of half of the product of the density 3mN//4Tc(R3 - Rf) and time averaged-
value of v%; ‘ ‘

(T) = 0.25mN; 0/ 50°(0.6R* + 0.3RR; + 0.1R)/(R* + RR;+ R). (28)
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3.3. The frequency of the dipole oscillations of the electronic cloud as a whole

According to the virial theorem, time-averaged values of kinetic (Eq. (28)) and potential
(Eq. (25)) energies of the oscillations for a linear harmonic oscillator should be equal.
This yields:

mf — [eszR3/mf(R3 —Rf3)2]l/2,
my=m [(0.6R* + 0.3RR,+ 0.1R)/(R> + RR;+ R)]. (29)

Collective electrons can't move everyone with the same amplitude and velocity,
because they can't penetrate inside the sphere on which the ions are situated and can't
create neutral zones near the positively charged ions. That is why Eq. (26) was assumed.
But consideration of the same movement of each electron would result in the same
frequency as in Eq. (29), only with m instead of m, That is why m,has a meaning of the
effective mass for the regarded type of a dipole movement of the collective electrons in a
fullerene molecule.

3.4. Calculation of the external radius
of the electronic cloud, assuming some value for o

Let us take the value of w;= 20 eV. Taking N,= 120 and /0, = 20 eV, and using Eq.
(29) we come to the following equation for R (in atomic units):

2220R’ = (R — R))’(R> + RR;+R/)(6R* + 3RR; + R/). (30)

Numerical solution of Eq. (30) yeilds R = 10.2/%/me* = 0.538 nm for Ry= 6.68%%/me”
=0.353 nm.

3.5. The electric field inside a fullerene molecule arising
due to the dipole oscillations

Total negative charge creates inside a fullerene molecule electrostatic potential,
described by Eq. (22). Total positive charge gives rise to the similar potential with
the opposite sign. When the total negative charge is shifted by s relative to the ions
along the z-axis, its potential is described by Eq. (22), but with (z — s) instead of z.
The potential of the positive charge remains unchanged. The sum of the two
potentials is a total potential. The derivative of the total potential on z, taken with
opposite sign, is the electrostatic field:

E=[eN; /(R = R})]s. (31)

This homogeneous electrostatic field, proportional to the shift s acts inside a fullerene
molecule.

4. CARBON NANOTUBE

Now we consider a metallic carbon nanotube of length /; which is much larger than its
diameter. Let us assume that N ions per unit length of a carbon nanotube are situated on
the surface of a cylinder of the radius R,, their charge eZN (Z = 2) is distributed
homogeneously on the surface of the cylinder. Neither the collective electrons nor the
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core ions could be found inside the cylinder. Let us assume that the charge of N, per unit
length collective electrons —eN,, is distributed homogeneously in a cylindrical layer R, < r
< R,. with a charge density —en where the electron density # is given by

n=N,/n(R,.> — R>). (32)

4.1. The electrostatic energy during transverse dipole oscillation
of the electronic cloud as a whole

Let us imagine that we fill the interior of the cylinder with positive and negative
electric charges of the same density. This does not change real electrostatic potential and
energy of the system considered. The total (real plus imaginary) negative charge produces
(according to Egs. (20) and (32)) the following potential inside the cylinder of radius R,,.:

0(r) = 0(0) + [eN,/ (R, = R, . (33)

The total (real plus imaginary) positive charge per unit length of a carbon nanotube is
eN,[R,.2/(R,.> — R,D)]. From this expression, Eq. (33), and cylindrical symmetry of the
charge distribution on a carbon nanotube, it follows that when total positive charge is
shifted relative to a total negative charge by distance /, electrostatic energy of the system
per unit length changes by €*N,[R,.”/(R,. — R,})*]h’.

Assuming & = hysinw,t, we get the following expression for the time averaged value
of the electrostatic energy of the oscillations per unit length:

<Wn> = ezjvnz[RneZ/Z(Rne2 - an)z]hOZ- (34)
4.2. The kinetic energy of the transverse dipole oscillations
of the electronic cloud as a whole

Let us assume that the displacements inside the electronic cloud u are directed along
the x-axis and:
M(}",t) = [(F - Rn)/(Rne - Rn)]hOSinmntt~ (35)

The local velocity v is directed along the x-axis also and
v(r,t) = Ju(r,)/dt = [(r — R,)/(R,e — R,)]®,,hocosm,t. (36)

Kinetic energy per unit length is equal to the integral over the volume of the
electronic cloud per unit length of half of the product of the density per unit length
mN,,/n(RM2 - R,,2) and time averaged-value of Vi

(Ty = mN,0,’ho’ 3R, + R,)/24(R,. + R,). (37
4.3. The frequency of the transverse dipole oscillations
of the electronic cloud as a whole

According to the virial theorem, time-averaged values of kinetic (Eq. (37)) and
potential (Eq. (34)) energies of the oscillations for a linear harmonic oscillator should be
equal. This yields:

0, = [262Nane2/mn(Rne2 _Rn2)2]l/23

My = [BRye + R,)/6(Re + Ry)]m. (38)
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Collective electrons can't move everyone with the same amplitude and velocity,
because they can't penetrate inside the cylinder on which the ions are situated and can't
create neutral zones near the positively charged ions. That is why Eq. (35) was assumed.
But consideration of the same movement of each electron would result in the same
frequency as in Eq. (38), only with m instead of m,. That is why m, has a meaning of the
effective mass for the regarded type of a transverse dipole movement of the collective
electrons in a carbon nanotube.

4.4. The electric field inside a carbon nanotube arising
due to the transverse dipole oscillations

Total negative charge creates inside a carbon nanotube electrostatic potential,
described by Eq. (33). Total positive charge gives rise to the similar potential with the
opposite sign. When the total negative charge is shifted transversely by % relative to the
ions along the x-axis, its potential is described by Eq. (22), but with (x — /) instead of x.
The potential of the positive charge remains unchanged. The sum of the two potentials is
a total potential. The derivative of the total potential on x, taken with opposite sign, is the
electrostatic field:

E =[2eN,/(R,.* —R,)]h. (39)

This homogeneous electrostatic field, proportional to the shift 4 acts inside a fullerene
molecule.
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LW

NEKI PROBLEMI FIZIKE MALOG BROJA DIMENZIJA
I NANOFIZIKE

Yuri Kornyushin

Fermi i kineticka energija se obicno izracunavaju u modelu sa periodicnim granicnim
uslovima, koji nije konzistentan sa nisko-dimenzionalnim problemima, gde su Cestice konfinirane.
Zbog toga je za konfinirane Cestice iskoriscen model potencijalne kutije za konzistentno
izracunavanje Fermi i kineticke energije u 3,2 i 1 dimenzionalnom slucaju. Ovaj prilaz je mnogo
logicniji i samo-usaglasen. Onda su izvedeni uslovi za zanemarivanje dimenzija, odnosno uslovi
pod kojima kretanje Cestica u kutiji moze biti razmatrano kao 2 i 1-dimenzionalno. Neki problemi
elektronskih kolektivnih oscilacija kod molekula Fulerena i ugljenikovih nanotuba su takode
ukljuceni.



