Vol.1, No 7, 2000 pp. 809 - 816
UDC 621.3.035.22:514.757
SOLUTION OF THE DIRECT PROBLEM
IN THEORY OF FLOW THROUGH STRAIGHT PLANE PROFILE CASCADE BY USING CONFORMAL
MAPPING INTO BAND PI/2 < Im? < PI/2
Božidar Bogdanović, Saša Milanović
The Faculty of Mechanical Engineering, Niš, Beogradska 14, 18000 Niš,
Yugoslavia
Abstract. In this paper, the mapping nature of flow around the profile
of a straight plane cascade into band flow pi/2 < Im? < pi/2 with
simetrically distributed singular points in ? = ?k, where k is a real number
depending on geometric parameters of cascade, has been amalyzed. According
to angles of flow at inlet and outlet of cascade as well as geometric parameters
of cascade profiles, nine characteristic situations can occure, among them
four belong to the group of basic mapping and five to the group of random
mapping.
According to the character of variation of the velocity potential along
the band contour one can conclude that the whole contour is mapped into
finite part of band, so that the infinite reach of band and the decaying
conformity of mapping in infinity can't make troubles in the solution of
problem. The Schwartz-integrals forming the mathematical model, can be
reduced to the forms with finite boundaries.
REŠAVANJE DIREKTNOG ZADATKA TEORIJE STRUJANJA
KROZ PRAVE RAVANSKE REŠETKE PROFILA KONFORMNIM PRESLIKAVANJEM STRUJANJA
NA POJAS PI/2 < Im? < PI/2
U radu je analiziran karakter preslikavanja strujanja oko profila prave
ravanske rešetke na strujanje u pojasu pi/2 < Im? < pi/2 sa simetrično
raspoređenim singularnim tačkama u ? = ?k, gde je k - realan broj, koji
zavisi od geometrijskih parametara preslikavanja rešetke. Zavisno od uglova
pravaca strujanja ispred i iza rešetke i geometrijskih parametara rešetke
profila mogu se javiti devet karakterističnih slučajeva preslikavanja,
od kojih se četiri mogu svrstati u grupu osnovnih preslikavanja, a pet
u grupu slučajnih preslikavanja.
Prema karakteru promene potencijala brzine po konturi pojasa zaključuje
se da se cela kontura profila praktično preslikava na ograničeni deo pojasa,
pa beskrajno prostiranje pojasa i narušena konformnost preslikavanja u
beskonačnosti ne stvara teškoće pri rešavanju zadatka. Schwartz-ovi integrali,
koji ulaze u sistem jednačina za rešavanje zadatka, svode se na oblike
sa konačnim granicama integraljenja.