Vol.2, No 9, 1999 pp. 847-855
UDC: 531.011 534
ALGEBRAIC CRITERIA FOR ASYMPTOTIC STABILITY AT 1:1 RESONANCE
IN THE CASE OF SIGN-CONSTANT LYAPUNOV FUNCTION
P. S. Krasil'nikov
Department of Theoretical Mechanics, Moscow Aviation Institute,
125871 Moscow, Volokolamskoe 4, Russia
Abstract. In the critical case of two pairs of purely imaginary eigenvalues at 1:1 resonance, the asymptotic stability of a system with two degrees of freedom is investigated. It is assumed that eigenvalues have simple elementary divisors. By means of sign-constant Lyapunov function which has sign-constant derivative, the new aalgebraic critria of asymptotic stability is obtained.

ALGEBARSKI KRITERIJUM ZA ASIMPTOTSKU STABILNOST PRI REZONANCIJI 1:1 ZA SLUČAJ KONSTANTNOG ZNAKA LJAPUNOV-LJEVE FUNKCIJE

Istraživana je asimptotska stabilnost sistema sa dva stepena slobode za kritični slučaj dve čisto imaginarne sopstvene vrednosti pri 1:1 rezonanciji. Pretpostavljeno je da sopstvene vrednosti imaju proste elementarne delioce. Pomoću Liapunov-ljeve funkcije konstantnog znaka sa konstantnim znakom izvoda, dobijen je novi algebarski kriterijum asimptotske stabilnosti.