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AT 1:1 RESONANCE IN THE CASE OF SIGN-CONSTANT

LYAPUNOV FUNCTION     
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Department of Theoretical Mechanics, Moscow Aviation Institute,
125871 Moscow, Volokolamskoe 4, Russia

Abstract. In the critical case of two pairs of purely imaginary eigenvalues at 1:1
resonance, the asymptotic stability of a system with two degrees of freedom is
investigated. It is assumed that eigenvalues have simple elementary divisors. By means
of sign-constant Lyapunov function which has sign-constant derivative, the new
algebraic criteria of asymptotic stability is obtained.

It is well known, the problem of stability of equilibrium at 1:1 resonance has been
investigated by Lagrange [3] and Weierstrass. In the case of linear conservative system
(purely imaginary eigenvalues, multiple resonance, simple elementary divisors).
Lagrange concluded than the equilibrium is unstable. Weierstrass (1858) has pointed out
Lagrange's mistake: the linear equations can be written in terms of normal variables and
therefore the system is stable.

Later N.E. Kochin has investigated this problem for non-linear Hamiltonian equations
in [6] . In the case of non-linear Hamiltonian system which has simple elementary
divisors, the full decision of the problem is given in paper [13]: the equilibrium is stable
as a rule. If non-linear Hamiltonian system has not simple elementary divisors, the
equilibrium is stable as a rule. If non-linear Hamiltonian system has not simple
elementary divisors, the equilibrium is stable in half of available cases and is unstable in
other cases [13,7].

A theory of multiple resonance of non-Hamiltonian equations has been developed for
reversible systems [8].

If non-Hamiltonian equations have the general form when elementary divisors are not
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simple, the equilibrium is unstable as a rule [4]. If the matrix of the linear part of the
equations is diagonalized (simple elementary divisors), the problem of the construction of
stability criteria is transcendental [5]. It means the surface that separates the set of
asymptotically stable systems from the set of unstable systems in the real parameter space
of the system is transcendental. However, this transcendence is not of universality since
the separating surface has algebraic sections [9]. The last results were obtained by means
of sign-definite function V that has signdefinite derivative V .

Hereafter, we obtain the new algebraic criteria for asymptotic stability in this
transcendental problem by means of the sign-constant function V which has sign-constant
derivative V .

1. STATEMENT OF THE PROBLEM. LYAPUNOV FUNCTION

Consider an autonomous system
4   0,(0)   ),( RxXxXx ∈== (1.1)

where X(x) is a smooth vector field such that the matrix (∂X/∂x)0 has purely imaginary
eigenvalues λ1 = λ2. Let us assume that λ1 has simple elementary divisors. The complex
third-approximation normal system is
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Let us pass to the polar variables by means of formulas

)exp(-iθrz   ),exp(iθrz jjjjjj ==

Eqs (1.2) have the following form:
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Here θ = (θ1 - θ2) is the resonance angle,
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The Lyapunov function
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(Dij are an arbitrary constants) was constructed by means of T-extension technology
[9,10]. Via this function, necessary and sufficient conditions of asymptotic stability were
obtained in the paper [9] provided that V and it's derivative V are sign-definite functions.

Now consider more general case when this function (and it's derivative) can be sign-
constant function. The derivative of V along the vector field of Eqs (1.3), (1.4) is
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The coefficients γij are the functions of variable k = r1/r2, k∈  (0,∞):
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The constant parameters Gj, Bij, Cij, Fm depend linearly on the arbitrary constants Dij, Dj.
Thus, for example

G0 = 4a11D11 + 2a5D1 + 2b5D2, G3 = 4a22D22 + 2a3D3 − 2b3D4

(for the other parameters, see [9]). The constants Dij and Dj are chosen so that the
coefficients of cos 2θ, sin 2θ, cos 3θ, sin 3θ vanish, i.e. we impose upon these numbers
the conditions C1m = C2m = Fm = 0 (m = 1,2). In order to simplify the coefficients of cosθ
and sinθ, we also require that B2m = 0. Then 

AD = D6R , D = (D11,D12,D22,D1,....,D5)T (1.6)

where A and R are 8 by 8 and 8 by 1 matrices, respectively, whose elements are linear
functions of the parameters. As the number D6 appears as a factor in the right-hand side
of Eqs (1.6), it does not play essential role, and we may assume it to be equal to unity.
We assume that det A ≠ 0. Let D = D* be a family of solutions of Eqs (1.6), depending on
the parameters of the problem.

Define the Lyapunov function be V*, where V* is the restriction of V to these family.
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2. CRITERIA FOR V* AND *V  TO BE SIGN-CONSTANT

Clearly
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The function *V  is sign-constant in the region r1 > 0, r2 > 0, 0 ≤θ < 2π if and only if
2*
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0 )()()( γ+γ≥γ  for any k > 0. It is evident that *V  is sign-constant in the cone
r1 ≥ 0, r2 ≥ 0 since *V is continued function in the planes r1 = 0, r2 = 0.

Hence, it follows that *V is sign-constant in the cone r1 ≥ 0, r2 ≥ 0, 0 ≤ θ < 2π if and
only if the equation
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has not positive roots k = kj except multiple roots.
We now get the criteria for V* to be sing-constant in the cone r1 ≥ 0, r2 ≥ 0 ,

0 ≤ θ < 2π. Let us convert V* to the form
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Lemma 1 [11]. The trigonometric polynomial
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is the positive sign-constant function of θ (0 ≤ θ < 2π) if and only if there exist the
complex numbers x0,x1,...xn satisfying equations
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The proof of this lemma is based on the transformation of polynomial g(θ)0≥0 to the
form

g(θ)= |x0 + x1z + ... + xnzn|2 (2.5)
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where z = exp(iθ). If we now transform g(θ) to the standard algebraic form
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and set the coefficients of polynomial (2.5) equal to the corresponding coefficients of
polynomial z−nG(z), we then have equalities (2.4).

Let us consider the case n = 2. If 2
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system (2.4) define x1, x2 as the univalent functions of x0. If we substitute these functions
into the first equation of system (2.4), we have
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Therefore, system (2.4) is solvable for x1, x2 (n = 2) if and only if the algebraic
equation (2.6) has at least one positive root 2/2

2
2
2 µ+σ≠ξ . So, the trigonometric

polynomial g(θ) is the positive sign-constant function of θ in this case only.
Obviously, the criteria of g(θ) to be the negative sign-constant function has the similar

form with a glance to the change σj, µj → −σj, µj. Coefficients L2k preserve values, L2k+1
change sign to opposite one.

Let us consider the trigonometric polynomial, which is situated in the right hand side
of expression (2.2). His coefficients are the functions of variable k. By formulas (2.2),
(2.3), we have *

11
* Dsign Vsign =  if V* is sign-constant for any k ∈  (0,∞). The next

statement follows from lemma l at once.

Corollary. Let 0D*
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if and only if for any k ∈  (0,∞) equation
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has one positive root 2/)k()k()k( 2
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3. AN INVESTIGATION OF THE MANIFOLDS V* = 0 AND 0V* =

To research the stability of the equilibrium by means of sign-constant function V*

which has sign-constant derivative we must present additional demands to functions V*

and *V . Indeed, from the paper [1], the manifold M0 = {x: V* = 0, 0 < ||x|| ≤ h}  (h is the
positive number) can't hold the whole negative semitrajectories, moreover manifold
M\M0 can't hold the whole paths where h} |||| 0 ,0)x(V :{M ≤<== xx .
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Let us get the conditions satisfying these demands. It is evident, the sign-constant
function )V(V **  will be equals to zero for θ = θ* if and only if θ* is the multiple root of
the trigonometric polynomial g1(k,θ) (g2(k,θ)).

From the beginning we shall consider the function *V . As described above, θ = θ* is
the root of sign-constant polynomial g1(k,θ) if and only if equation (2.1) has the multiple
positive root k = k*. Hence, it follows sign-constant function *V can be equals to zero
only along the rays

r1 = k* r2 θ=θ* (3.1)

Let us show in general case there does not exist the final interval of time (t1,t2), t2 > t1

such that the phase point belong to one of the rays (3.1) when t ∈  (t1,t2).
Indeed, if we substitute equalities (3.1) to Eqs (1.3), two trigonometric equations for θ

were obtained. By means of exchange x = exp(iθ*), received equations can be
transformed to the follow form:
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k* is the multiple positive root of equation (2.1). Coefficients w0, w1, w2 have the similar
form with a glance to the substitution bj → aj, aj → −b1, a lm → −blm.

If the resultant R1(f1,f2) of polynomials f1,f2 does not equal to zero, the systems (3.2)
is unsolvable for z. Therefore there does not exist continuous section of phase path which
belongs to one of the rays (3.1).

So, if R1(f1,f2) ≠ 0 when k* passes through the set of positive multiple roots of
equation (2.1), the manifold 0V* = can't hold the whole paths.

Let us consider the function V* . By means of exchange z = exp(iθ) for polynomial
g2(k,θ) we have

g2(k,θ) = x−2G(k,z) ,
where
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Every multiple root ζ0 = exp(iθ0) of polynomial G(k,z) has the corresponding multiple
root θ0 of g2(k,θ) herewith their multiplicities are equal one another. Thus, function V*

equals to zero if and only if
F(G) = 0 , (3.4)

where F(G) is the discriminant of polynomial G(k,z). Obviously, F(G) is the function of
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k. Hence, it follows that the sign-constant function V* can be equal to zero only along the
rays

r1 = k0r2 , θ = θ0

where k0 is the positive root of (3.4).
Let R2(f1,f2) be the resultant of polynomials (3.2), (3.3) provided that k* → k0. As

described above, if R2(f1,f2) ≠ 0 when k0 passes through the set of positive roots of
equation (3.4), the manifold V* = 0 can't hold the some kind of continuous section of any
phase path.

4. AN ALGEBRAIC CRITERIA FOR ASYMPTOTIC STABILITY

Let us get the new criteria for asymptotic stability by means of sign-constant function
V*. We take advantage of follow theorem.

Theorem 1 [12]. Let the differential equations of perturbed motion have the continuous
function V(x), V(0) = 0 such that

a) h ||||   , 0)(V   , 0)(V ≤≤≥ xxx
b) Set }h ||||  0   , 0)V( :{M0 <<== xxx can't hold the negative semitrajectories

c) Set }h ||||  0   , 0)(V :{ M   , M\M 0 <<== xxx  can't hold whole trajectories
Then the unperturbed equilibrium x = 0 is asymptotic stable.
Let A be the matrix of linear system (1.6), and *

j
*
ij D ,D  are the parameters of V that

satisfy Eqs (1.6), *
3

*
0 G ,G  are the corresponding values of the coefficients in the derivative

*V , σj(k), µj(k), Lj(k) are calculated by (2.3), (2.7); R1(f1,f2), R2(f1,f2) are the resultants of
polynomials (3.2), (3.3) when k = k* or k = k0 correspondingly.

Theorem 2. Let 0)D,D,G,(G ,0Adet *
22

*
11

*
3

*
0 ≠≠ and equation (2.1) has not positive

roots except multiple roots, ;0DG *
11

*
0 < R1(f1,f2) ≠ 0, R2(f1,f2) ≠ 0 when values k* and k0

pass through the set of positive roots of Eqs (2.1) and (3.4) correspondingly. Then the
equilibrium position of the model system (1.2) is asymptotic stable if the equation (2.8)
has at least one positive root )k()k()2/1()k( 2

2
2
2 µ+σ≠ξ  for any k > 0; otherwise, if

equation (2.8) has not such kinds of roots for some k > 0, the model system (1.2) is
unstable.

If the equations (2.1), (3.4) have no multiple roots, the asymptotic stability and
instability are retained by the full system (1.1).

Proof. From the assumptions of the theorem, function *V  is sign-constant in the cone
r1 ≥ 0, r2 ≥ 0, 0 ≤ θ < 2π herewith *

0
* Gsign Vsign = . If the equation (2.8) has the positive

rots for any k ∈  (0,∞), function V* is sign-constant also, *
11

* Dsign Vsign = . Manifold
M0 = {r1,r2,θ: V* = 0}  can't hold negative semitrajectories, 0VV ** ≤ . Thus, function V*

satisfies the conditions of Theorem 1. Therefor, the equilibrium, of model system (1.2) is
asymptotic stable. If equation (2.8) has no positive roots ξ(k) for some k > 0, then V*

changes the sign, therefore the conditions of Krasovskii instability theorem are satisfied.
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If Eqs (2.1) has no multiple roots, *V  is sign-definite function by virtue of the full
system (1.1). Indeed, the higher-order terms dropped when deriving model equations
(1.2) do not have an affect on the sign of *V , since *V  and the dropped higher-order
terms are homogeneous polynomials in zj, jz . As the equation (3.4) has no multiple
roots, V* is sign-definite function. Therefore, by means of Lyapunov's theorems, the
asymptotic stability and instability of model system (1.2) are retained by the full system
(1.1). This completes the proof.

Note these new results supplement the investigations [9] for the case when Eqs (2.2)
and (3.4) have the multiple roots. In general case, the appearance of multiple roots does
not destroy the asymptotic stability of model system (1.2) at least.

However, in degenerate case, when manifold 0V* =  contains whole path the
appearance of multiple roots can destroys the asymptotic stability.

Indeed, if R1(f1,f2) = 0, Eqs (1.3), (1.4) have particular solution r1 = k*r2, θ = θ* on the
manifold 0V* = . Let R2(k*,1, θ*) > 0, then as follows from the equality

),1,k(Rrr **
2

2
22 θ=

and from the paper [2] the system (1.1) is unstable.
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ALGEBARSKI KRITERIJUM ZA ASIMPTOTSKU STABILNOST
PRI REZONANCIJI 1:1 ZA SLUČAJ KONSTANTNOG ZNAKA

LJAPUNOV-LJEVE FUNKCIJE
P. S. Krasil'nikov

Istraživana je asimptotska stabilnost sistema sa dva stepena slobode za kritični slučaj dve čisto
imaginarne sopstvene vrednosti pri 1:1 rezonanciji. Pretpostavljeno je da sopstvene vrednosti
imaju proste elementarne delioce. Pomoću Ляпунов-ljeve funkcije konstantnog znaka sa
konstantnim znakom izvoda, dobijen je novi algebarski kriterijum asimptotske stabilnosti.


