Vol.2, No 7, 1997 pp. 241 - 253
UDC 62-50:62-52
INVERSE PROBLEMS OF NONLINEAR CONTROL SYSTEMS
Alexander M. Kovalev, Vladimir F. Shcherbak
AMS subject classification 93B05, 93B07, 70E15

Abstract. The inverse problems for nonlinear control system, described by ordinary differential equations in values of a output considered on one or more trajectories are being studied. The criterions of observability, invertibility, identifiability of nonlinear systems with using the extended output have been proved. On the basis of the modified implicit functions theorem the sufficient conditions are obtained in terms of Jacobi matrices ranks which permit the effective check-up. The set trajectories method proposed extends classes of systems for which it is possible to find unknowns of their mathematical models and is the base of new computing algorithms. It is shown that problem of determing input in the values of state known on the several trajectories always can be reduced (at least locally) to the algebraic relations and has solution for any system. The possibilities of determining the moments of inertia of a rigid body on the basis of measurements of the projection of the angular velocity onto a principal axis are studied. 
INVERZNI PROBLEM NELINEARNIH UPRAVLJAČKIH SISTEMA
U radu se proučavaju inverzni problemi za nelinearne upravljačke sisteme, opisane običnim diferencijalnim jednačinama po vrednostima izlaza razmatranim na jednoj ili više trajektorija. Dokazani su kriterijumi opservabilnosti, invertibilnosti i mogućnosti identifikacije sa korišćenjem proširenog izlaza. Na osnovu modifikovane teoreme implicitnih funkcija dobijeni su dovoljni uslovi u obliku ranga Jakobijevih matrica što dozvoljava efikasnu proveru. Predloženi metod skupa trajektorija proširuje klase sistema za koje je moguće naći nepoznate njihovih matematičkih modela i predstavlja osnovu novih računskih algoritama. Pokazano je da se problem odredjivanja ulaza po poznatim veličinama stanja na nekoliko trajektorija, uvek može redukovati (barem lokalno) na algebarske relacije i ima rešenje za svaki sistem. Proučene su i mogućnosti odredjivanja momenata inercije krutog tela na osnovu merenja projekcije ugaone brzine na glavnu osu.