Vol.4, No 16, 2004 pp. 55-68
UDC 534:531.8:531.011:517.9:531.381:530.182(043)
NONLINEAR DYNAMICS OF THE HEAVY GYRO-ROTOR
WITH TWO ROTATING AXES
Katica R. (Stevanović) Hedrih, Ljiljana Veljović*
Faculty of Mechanical Engineering University of Niš
Mathematical Institute SANU Belgrade
Serbia and Montenegro, 18000 Niš, Vojvode Tankosica 3/22
Telefax: +381 18 41 663, Mobile +381 63 8 75 75 99
e-mail: katica@masfak.ni.ac.yu,
khedrih@eunet.yu
* Faculty of Mechanical Engineering University of Kragujevac
Serbia and Montenegro, 34000 Kragujevac, Sestre Janjić 6
Abstract. By using an example of the rotor system which rotates
around two axes with the section, the scalar equation of the rotor dynamics
is derived, as well as the expressions for the kinetic pressure on the
rotor system bearings. For the case when the scewlly eccentrical disc rotates
around the shaft support axis with constant angular velocity, the nonlinear
dynamics around the moveable axis of the proper own rotation is studied.
Nonlinear rotor system dynamics is presented by the phase portrait in the
phase plane, with the trigger of the singularities as well as with the
homoclinic orbits and homoclinic points of the nonstable saddle and that
is done for the different values of eccentricity of the heavy disc as well
as of the angle of skewlly disc.
NELINEARNA DINAMIKA TEŠKOG GIROROTORA
OKO DVE OSE KOJE SE SEKU
Za rotor, kao i za disk, koji rotira oko dve ose koje se seku u nepomičnoj
tački, dobijena je diferencijalna jednačina kretanja, kao i izrazi za kinetičke
pritiske u ležištima. U slučaju kada ekscentrični okvir-suport diks oko
ose konstantnom ugaonom brzinom, proučavaju se nelinearna dinamika obrtanja
oko sopstvenoe ose. Svojstva nelinearne dinamike se prikazuju pomo]u faznog
portreta u faznoj ravni, homokliničkih trajektorija i singularnih tačaka,
a za razne vrednosti koeficijenta ekscentričnosti diska kao i ugla zakošenja
istog u odnosu na osu sopstvene rotacije.