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Abstract. By using an example of the rotor system which rotates around two axes with
the section, the scalar equation of the rotor dynamics is derived, as well as the
expressions for the kinetic pressure on the rotor system bearings. For the case when the
scewlly eccentrical disc rotates around the shaft support axis with constant angular
velocity, the nonlinear dynamics around the moveable axis of the proper own rotation
is studied. Nonlinear rotor system dynamics is presented by the phase portrait in the
phase plane, with the trigger of the singularities as well as with the homoclinic orbits
and homoclinic points of the nonstable saddle and that is done for the different values
of eccentricity of the heavy disc as well as of the angle of skewlly disc.

1. INTRODUCTION

In numerous of machines the shaft appears as the most common basic element. By
using the example of the heavy rotor as well as a disc, eccentrically positioned on the
light, mass neglected shaft with bearings on the light, mass neglected support which
rotates around two axes with the section, nonlinear dynamic analysis of the free rotor
dynamic, in this paper, is presented.

In one of classical monographs [1] by A. A. Andronov, A. A. Witt and S. E. Hajkin,
which has a great number of editions, some classical examples of nonlinear systems with
one degree of freedom of oscillatory motion and their phase portraits except general
theory of nonlinear oscillations are presented, and such similar examples can also be
found in books by J. J. Stoker [3] as well as in the text book by D.P. Rašković [14].
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Especially in monograph by Guckenheimer, J. and Holmes, Ph. [3], the results of
research on nonlinear systems and properties of various kinds of bifurcations are pointed
out, and also some kind of bifurcations in book by Gerard, I. and Daniel, J. [2]. A series
of monographs by Mitropolyskiy, Yu. A. [4] deals with theory, methods and problems of
asymptotic theory of non-stationary nonlinear processes of nonlinear system oscillations.

Nonlinear dynamics of gyro-rotors is a very old engineering problem with many
different research results and discoveries of new nonlinear phenomena (see Refs. [1] and
[3]), and of stationary and nonstationary vibrations regimes (see Ref. [4]) with different
kinetic parameters of the dynamical system. However, even nowadays many researchers
pay attention to this problem again, and again arose interest in researching the nonlinear
dynamics of coupled rotors and gyro-rotors (see Refs. [5], [6], [7], [8], [9] and [10]) by
using new analytical, numerical and experimental methods to discover the properties of
nonlinear dynamics and for finer possibilities for controlling nonlinear phenomena,
instabilities and non stationary regimes and the appearance of chaotic-like and stochastic-
like processes.

2. THE MODEL OF THE GYROROTOR SYSTEM  AND BASIC EQUATIONS

The rotation of rigid body which is rotating around two intersecting axes is known as
rotating around fixed point. In this case when the support shaft axis is vertical and the
rotor shaft axis is horizontal, the angular velocity is: 

. .

1 21 1 1 2 2 1 2n n n nω = ω + ω = ϕ + ϕ .
The angles ϕ1 (the angle of  own rotation around the moveable axis oriented by the

unit vector 1n ) and ϕ2 (the angle of rotation around the shaft support axis oriented by the
unit vector  2n ) are generalized coordinates in case when we investigate system with two
degree of the freedom, but in our case we choose ϕ1 as a generalized coordinate, and ϕ2 as
a rheonomic coordinate defined by time function. Their derivatives to time 1ϕ  and 2ϕ  are
angular velocities.

The position vector of the mass center in relation to the intersection point of the axes
is: 1 1cos sinoc n e v e= β − β , eOC = . The expression for the linear momentum is:

CMV M ocΚ = = ω× , where M is the mass of the rotor, and  the expression for the angular
momentum is: oL = ℑω , where ℑ is tensor matrix of inertia in the following form:

u uv un

vu v vn

nu nv n

J J J
J J J
J J J

− − 
 ℑ = − − 
 − − 

On the system beside the own weight 2G Gn= − , bearing reactions: the reaction of
spherical bear A ( )AF  and the reaction of cylindrical bear B ( )BF  apear.

Using the theorems of linear momentum and angular momentum derivatives in the
following forms: 

i
dK F
dt

= ∑   and    ( )o
o i i

dL M F M
dt

= +∑ ∑  we can obtain the system of six

scalar equations. By solving this system with respect to the known bearing reactions we
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can obtain the system containing one differential equation of motion and corresponding
expressions of the bear reaction forces.

The moving coordinate system defined by three unit vectors of the coordinate axes
orientation, 1u , 1v  and 1n  is rigidly connected with the moving shaft of the gyro-rotor.
The unit vector 1n is vector orientation of the moving shaft axis. The shaft axis (1) of its
own rotation axis, with the spherical bear A and cylindrical B, on the length 2a are on the
support (2). The rotation of the support is determined by the coordinate ϕ 2.

So, the momentary angular velocity of the rotor is:
. . .

2 21 1 1 1 1 1sin cosu v nω = ϕ ϕ + ϕ ϕ + ϕ           (1)

By using the theorems of linear momentum and angular momentum derivatives in the
listed previous forms, we obtain the differential equation of the rotation around the rotor
shaft in the form

 1

.
.

2
1 2 1 2 1 1

sincos sin 2 sin nvn v u

n n n n

MJ J J Mge
J J J J

− βω + ω ϕ + ω ϕ + ϕ =           (2)

3. THE DIFFERENTIAL EQUATION OF THE GYROROTOR SYSTEM  NONLINEAR DYNAMICS

When the angular velocity 2ω is with constant intensity  const=ω2 , and when the
system is without a couple 

 1nM , this equation is in the form:

.
2

1 2 1 1
1 sinsin 2 sin 0
2

v u

n n

J J Mge
J J
− βω + ω ϕ + ϕ =           (3)

We can transform it so that it can be written in a well known form (see Ref. [1], [6], [8]):
.

2
1 1 1( cos )sin 0ω + Ω λ − ϕ ϕ =           (4)

Here we use the following notation:

          2 2
2

u v

n

J J
J
−Ω = ω             and          

2
2

sin
( )u v

Mge
J J

βλ =
ω −

   (5)

 In case when the rotor is eccentrically positioned disc, we have:

         
2 2
2

( 1)sin ,
( sin 1)

g
e

ε − βλ =
ω ε β −

      2
2 2

2 2

sin 1
sin 1

ε β −Ω = ω
ε β =

,       
2

21 4 e
r

ε = + . (6)

Where r is radius of disc. One can see that λ and Ω2 are in function of eccentricity e and
angle β. So, we decide to analyze their influence on nonlinear dynamic behaviour of system.
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4. THE EQUATIONS OF THE  PHASE TRAJECTORIES AND CONSTANT ENERGY CURVES.
ANALYSIS OF THE DYNAMICAL RELATIVE EQUILIBRIUM POSITIONS

The solution of differential equation (4) is:





 ϕ−ϕ+ϕ−ϕλΩ+ϕ±=ϕ )cos(cos

2
1)cos(cos2 10

2
1

2
101

22
101    (7)

The dynamical equilibrium positions (the relative rest equilibrium positions) exist for:
(λ−cosϕ1) sinϕ1 = 0, and that is for: ϕ1 = 0 and cosϕ1 = λ, |λ| ≤ 1.

We show graphical presentation of λ(ν,β) in function of angle β, as a family curves,
depending of ν. It can be seen in the diagrams shown in the Figure 1. a*, and b* by using
different scales and for ν = 0,1; 0,2; 0,5; 1.

a*      b*
Fig. 1. Parameter λ(ν,β) in function of the angle β. [in Figure β = x, ν(β) = f(x) and

family depending of ν = 0,1; 0,2; 0,5; 1;].

If we use the coefficient of eccentricity e
r

ν =  , we can analyze λ(ν,β) in function of

it. We can see the diagram as a family curves depending of β, and for different 
3

,
4

,
6

πππ=β ,

shown in the Figure 2.a*.
We, also, show graphical presentation of λ(ν,β) in function the coefficient of

eccentricity e
r

ν =  and λ(ν,β) in function of the angle β, as the surface in parameter space

(λ,(ν,β),ν,β). We can see that by the surface shown in system coordinate (λ,ν,β) in the
Figure 2. b*.

The dynamic relative equilibrium positions of the gyro-rotor are for: 1 arccosϕ = ± λ ,
|λ| ≤ 1, then the relative equilibrium positions determined by  1 arccosϕ = ± λ  are stable  -
the stable center types, and for 1 , 0, 1, 2,...k kϕ = π = ± ±  then the relative equilibrium
positions are unstable saddle types.

We saw that  λ(ν,β) is in function of  coefficient of eccentricity e
r

ν =  and angle β,so

we have that is:
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1 2 2 2 2
4 sinarccos

4 sin cos
g

r
ν βϕ = ±

ω ν β − β
  and   

2 2 2 2
4 sin1 1

4 sin cos
g

r
ν β− ≤ ≤

ω ν β − β
(8)

a*            b*
Fig. 2. a* Parameter λ(ν,β) in function of the coefficient of  eccentricity e

r
ν =  for

different 
3

,
4

,
6

πππ=β .  b* Parameter λ(ν,β) in function of the coefficient of

eccentricity e
r

ν =  and λ(ν,β) in function of the angle β.

The dynamic relative equilibrium positioned are determined by the following
positions: 1* stable 

.

1 10, 2 , 0, 1, 2,...k kϕ = ϕ = π = ± ± ;

               and unstable 
.

1 10, (2 1), 0, 1, 2,...k kϕ = ϕ = π + = ± ± for |λ| ≥ 1
  2* ustable ;01 =ϕ 1 , 0, 1, 2,...k kϕ = π = ± ± ;
       and stable 1 arccosϕ = ± λ , for |λ| ≤ 1.

The singular point for which is ϕ1 = 0 is an unstable saddle point when |λ| < 1, and is
a stable center when |λ| > 1. The singular point for which is ϕ1 = ±π is the unstable saddle
point for |λ| > −1, and is the stable center when |λ| < −1.

The equation of the homoclinic orbit passing through the saddle point ( 1 10, 0ϕ = ϕ = )
has the following form:

2
1 1 12 (cos 1) sinϕ = ±Ω λ ϕ − + ϕ (9)

The equation of the homoclinic orbit passing through the saddle point ( 1 10,ϕ = ϕ = π )
is in the following form:

2
1 1 12 (cos 1) sinϕ = ±Ω λ ϕ + + ϕ (10)

These separatrices are shown in the Figure 4. for different values of parameters: the
coefficient of  eccentricity e

r
ν =  and the angle β.
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For 1ϕ =0 and 1 arccosϕ = ± λ , |λ| ≤ 1 we have:

              2 2
1 1 12 cos cosϕ = ±Ω λ + λ ϕ − ϕ (11)

5. EXPRESSIONS OF THE KINETIC BEARING PRESSURES. NUMERICAL ANALYSIS.

In the case when we have two intersecting axes and one of which is vertical and
second horizontal, and when the angular velocity of shaft support is constant, we
determined that the kinetic bearing pressures of the defined gyro-rotor system are:

 
. .

2
A 1 1 1 2 1 1 1

2
2 1 1 1 2 1

1F ( sin ( cos ) ( sin sin sin cos ) sin cos
2

        sin cos sin cos cos 2 sin )

u Mg a e Mea J
a

J J

= ϕ − β + ω β − ω β ϕ ϕ − ε ω β β +

+ ω ε β β ϕ ϕ + ω ω ε β ϕ +

      
2 2 2 2

1 1 1 2 1 1

2 2 2
2 1 1 2 1 1

1 ( cos ( cos ) ( sin sin sin ) sin cos
2

1sin cos cos (cos (1 sin ) sin 2 sin )
2

v Mg a e Mea J
a

J J

+ ϕ − β + ω β + ω β ϕ + ε ω β β +

+ω ε β β ϕ + ω ω ε ϕ + β − β ϕ +

(12)

2
1 1 2 1 2( 2 sin cos cos )n Me Me+ − ω ω β ϕ − ω β

.
2

B 1 1 2 1 1 1

2
1 2 1

1F ( sin ( cos ) sin cos cos sin sin cos
2

       2 sin sin )

u Mg a e J J
a

J

= ϕ + β + ε ω β β ϕ ϕ + ω ε β β +

+ ω ω ε β ϕ +

                    
2 2

1 1 2 1 1

.
2

1 2 1 1 2 1 1 1 1

1 ( ( cos ) cos sin cos cos sin cos
2

2 cos sin cos sin ( sin cos sin ))

v Mg a e J J
a

J J Mea

+ + β ϕ + ε ω β β ϕ + ε ω β β

+ ω ω ϕ + ε β βω ω ϕ + ω β − ω β ϕ

(13)

We give graphically presentation of kinetic bearing pressures AF for different values
of  system parameters: the eccentricity coefficient e

r
ν =  and the angle β (see the Figures 3.

a* and  b*,   4. a* and b* ,   5.a*, b*, c* and d*   and   6.a* and b*).

a* b*

Fig. 3. a* and b* Graphical presentation of kinetic bearing pressures AF  for different
values of  system parameters: the eccentricity coefficient e

r
ν =  and the angle β.
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Fig. 4. a* and b* Graphical presentation of kinetic bearing pressures AF  for different

values of  system parameters: the eccentricity coefficient e
r

ν =  and the angle β.
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Fig. 5. a*, b*, c* and d* Graphical presentation of kinetic bearing pressures AF  for different

values of  system parameters: the eccentricity coefficient e
r

ν =  and the angle β.
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a*                                                                  b*
Fig. 6. a* and b* Graphical presentation of kinetic bearing pressures AF  for different

values of  system parameters: the eccentricity coefficient e
r

ν =  and the angle β.

We give presentation of kinetic bearing pressures BF for different values of system
parameters graphically: the eccentricity coefficient e

r
ν =  and the angle β (see the Figures

7.a*, b*, c* and d*, and 8.a*, b*, c* and d* .).
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Fig. 7. a*, b*, c* and d* Graphical presentation of kinetic bearing pressures BF  for different

values of  system parameters: the eccentricity coefficient e
r

ν =  and the angle β.
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Fig. 8. a*, b*, c* and d* Graphical presentation of kinetic bearing pressures BF  for different

values of  system parameters: the eccentricity coefficient e
r

ν =  and the angle β.

6. THE NUMERICAL ANALYSIS AND GRAPHICAL PRESENTATION IN PHASE PLANE

By using the numerical experiment and graphical presentation of the numerical results
we can build a qualitative analysis of the nonlinear dynamics properties of relative gyro-
rotor rotation. A qualitative analysis of stationary relative equilibrium positions of rheo-
nomic dynamical model by using the equivalent conservative scleronomic system, which
correspond to the rheonomic system of the gyro-rotor model is pointed out (see Ref. [7]).
The potential energy exchange curve for different parameters value of the basic system
which corresponds to the gyro-rotor dynamic model is presented in Figure 9. a*, b* and c*.
The graphical presentation of potential energy portraits for different values of  system pa-
rameters: the eccentricity coefficient e

r
ν =  and the angle β is shown in Figure 9. a*, b* and c*.

Using MathCad program on the accomplished numerical experiment for researching
the existence, like the number and character of stationary values of potential energy of
the equivalent conservative scleronomic system, as number of configuration of dynamic
relative equilibrium positions and character of their stability, and transformations of
phase trajectories with exchanging one of the kinematic parameters of system: the
eccentricity coefficient e

r
ν =  or the angle β.
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ϕϕ

BF

BF BF

BF
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Fig. 9. a*, b* and c* Qualitative analysis of stationary relative equilibrium positions of
rheonomic dynamical model by using the conservative scleronomic system, which
correspond to the rheonomic system of the gyro-rotor model. The potential energy
exchange curve for different parameters value of the basic system which
corresponds to the gyro-rotor dynamic model. Graphical presentation of potential
energy portraits for different values of  system parameters: the eccentricity
coefficient e

r
ν =  and the angle β.

In Figure 10. we can see characteristic phase trajectories portraits for examples of the
potential energy curves from Fig. 9, and corresponding homoclinic separatrix phase
trajectories for different parameters values of the basic system correspond to the gyro-
rotor nonlinear dynamic model. The examples of the trigger of the coupled singularities
are presented. Graphical presentation of constant energy curves and portraits for different
values of  system parameters: the eccentricity coefficient e

r
ν =  and the angle β are

presented in Figure 10. a*, b*, c*, d*, e*  and f*.
In Figure 11.a*, b*, c* and d* The transformations and layering of the homoclinic

trajectories  with  change of the kinetic parameters values of  the basic system correspond
to the gyro-rotor dynamic model, the eccentricity coefficient e

r
ν =  and the angle β, are

presented. The examples of the trigger of the coupled singularities and homoclinic
trajectories in the form of the number eight are, also, presented.
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Fig. 10.a*, b*, c*, d*, e*  and f*. Characteristic phase trajectories portraits for examples
of the potential energy curves from Fig. 9, and corresponding homoclinic
separatrix phase trajectories for different parameters values of the basic system
correspond to the gyro-rotor nonlinear dynamic model. Examples of the trigger of
the coupled singularities.
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Fig. 11. a*, b*, c*  and d*. Graphical presentation of the transformations and layering of the
homoclinic trajectories with change of the kinetic parameters values of the basic
system correspond to the gyro-rotor dynamic model. Examples of the trigger of the
coupled singularities and homoclinic trajectories in the form of the number eight.

The characteristic homoclinic phase trajectories of stationary regimes of nonlinear
dynamic are obtained by using the conservative scleronomic system which correspond to
the rheonomic system of the gyrorotor  model own rotation.

CONCLUDING REMARKS

By using the example of the heavy rotor as well as a disc, eccentrically positioned on
the light, mass neglected shaft with bearings on the light, mass neglected support which
rotates around two axes with the section, nonlinear dynamic analysis of the free rotor



 Nonlinear Dynamics of the Heavy Gyro-Rotor with Two Rotating Axes 67

dynamic, in this paper, is presented. By using the integral of equations of the phase tra-
jectories family, the kinetic pressures of the shaft bearing are determined. For the differ-
ent cases of eccentricity of the heavy disc, as well as of the angle of skewlly positioned
disc, the phase trajectories are graphically presented. Here the kinetic pressures of the
shaft bearings are also graphically presented.

It can be seen that for small values of angle β there exist a wide region where pa-
rameter λ(ν,β) may be less than 1 and that is the region where the dynamical stable equi-
librium positions exist. For greater values of an angle β the region of |λ| < 1 is very nar-
row. In that case λ(ν,β) becomes greater than 1 in a space where the coefficient of eccen-
tricity ν is smaller.

First the author defines a trigger of coupled singularities theorem (see Refs. [5] and
[12]) and the existence of homoclinic orbit and their transformation shaped by number
eight, as their application on systems relevant for technical practice in her articles [6]-
[11], she also constructs phase portraits and particularly considers phenomena of homo-
clinical orbits transformations and their disintegration, appearance and disappearance of
homoclinical orbits shaped  by number eight, as the trigger of coupled singularities.

In this paper we can also see a good example of practical application  theorem of the
trigger of coupled singularities and homoclinic orbits shaped by number eight. We used
the researched results in the form of phase portraits or the family of layering homoclinic
orbits of nonlinear dynamic of skewly positioned discs relative rotation as visualization
of the phase portraits transformations with respect to the variation of the system parame-
ters.
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NELINEARNA DINAMIKA TEŠKOG GIROROTORA
OKO DVE OSE KOJE SE SEKU

Katica R. (Stevanović) Hedrih, Ljiljana Veljović

Za rotor, kao i za disk, koji rotira oko dve ose koje se seku  u nepomičnoj tački, dobijena je
diferencijalna jednačina kretanja, kao i izrazi za kinetičke pritiske u ležištima. U slučaju kada
ekscentrični okvir-suport diks oko ose konstantnom ugaonom brzinom, proučavaju se nelinearna
dinamika obrtanja oko sopstvenoe ose. Svojstva nelinearne dinamike se prikazuju pomo]u faznog
portreta u faznoj ravni, homokliničkih trajektorija i singularnih tačaka, a za razne vrednosti
koeficijenta ekscentričnosti diska kao i ugla zakošenja istog u odnosu na osu sopstvene rotacije.


