Vol.3, No 15, 2003 pp.1017-1031
UDC 621.3.016.352
Invited Paper
LYAPUNOV AND NON-LYAPUNOV STABILTY THEORY:
LINEAR AUTONOMOUS AND NON-AUTONOMOUS
SINGULAR SYSTEMS
Dragutin Lj. Debeljković
Faculty of Mechanical Engineering, Dept. of Control Engineering,
University of Belgrade, 27. marta 80, 11000 Belgrade, Serbia and Montenegro
E-mail: ddebeljkovic@mas.bg.ac.yu
Abstract. Singular systems are those in which the dynamics are governed
by a combination of algebraic and differential equations. The complex nature
of singular systems causes many difficulties in the analytical and numerical
studies of such systems, particularly when there is a need for their control.
In that sense the question of their stability deserves great attention.
A particular class of these systems operates in free as well as in forced
regime. A brief survey of the results concerning their stability in the
sense of Lyapunov and finite and practical stability are presented as the
basis for their high quality dynamical investigation.
Key words: Singular systems, Lyapunov stability, Finite and
Practical Stabilty
TEORIJA LJAPUNOVLJEVE I NELJAPUNOVLJEVE
STABILNOSTI: LINEARNI AUTONOMNI I NEAUTONOMNI SINGULARNI SISTEMI
Singularni sistemi su oni sistemi čija dinamika zadovoljava sistem kombinovanih
algebarskih i diferencijalnih jednačina. Složena priroda singularnih sistema
je uzrok mnogih teškoća u analitičkim i numeričkim studiranjima takvih
sistema, posebno kada je neophodno upravljanje. U tom smislu pitanje njihove
stabilnosti privlači posebnu pažnju. Posebna klasa tih sistema se nalazi
kako u slobodnom tako i u prinudnom režimu. Kratak pregled tih rezultata
koji se tiču njihove stabilnosti u smislu Ljapunovljeve konačne i praktične
stabilnosti predstavljaju osnovu za njihovu bolju kvalitativnu dinamički
analizu.
Ključne reči: singularni sistemi, Ljapunovljeva stabilnost,
konačna i praktična stabilnost