Vol.3, No 14, 2003 pp. 843-849
UDC 514.82
Invited Paper
ON A PERFECT FLUID SPACE-TIME ADMITTING
QUASI CONFORMAL CURVATURE TENSOR
Sarbari Guha
Dept. of Physics, St. Xavier's College, 30 Park Street, Kolkata 700
016
E-mail: sarbariguha@ rediffmail.com
Abstract. The notion of the quasi conformal curvature tensor C*
of type (1,3) in a Riemannian manifold (Mn,g) (n>3) was introduced by M.
C. Chaki and M. L. Ghosh [1] according to whom
C*(X,Y,Z) = aR(X,Y,Z) + b[S(Y,Z)X ? S(X,Z)Y + g(Y,Z)QX – g(X,Z)QY]
? [ + 2b][g(Y,Z)X –g(X,Z)Y]
where a and b are constants, R is the Riemann tensor of type
(1,3), S is the Ricci tensor of type (0,2), Q is the Ricci tensor of type
(1,1) and r is the scalar curvature of the manifold.
In this paper, a four-dimensional perfect fluid space-time with a Lorentz
metric of signature (+,+,+,?) and non-zero scalar curvature, admitting
a quasi conformal curvature tensor ,has been considered.
It is shown that, if such a fluid space-time with unit timelike velocity
vector field obeys Einstein's equation with cosmological constant and its
quasi conformal curvature tensor is divergence-free then the fluid is shear-free,
irrotational and its energy density is constant over the hypersurface orthogonal
to the velocity vector field.
O PROSTOR-VREMENU, KOJI DOZVOLJAVA
KVAZI-KONFORMNI TENZOR KRIVINE,
I PREDSTAVLJA IDEALNI FLUID
Pojam kvazi-konformalnog tezora krivina C* tipa (1,3) na Riemannian višestrukosti
(M*,g) (n>3) su uveli M.C.Chaki i M.L.Ghash [1] u saglasnosti sa:
C*(X,Y,Z) = aR(X,Y,Z) + b[S(Y,Z)X ? S(X,Z)Y + g(Y,Z)QX – g(X,Z)QY]
? [ + 2b][g(Y,Z)X –g(X,Z)Y]
gde su gde su konstante, R Reimann-ov tenzor tipa (1,3), S je
Ricci-jev tenzor tipa (0,2), Q je Ricci-jev tenzor tipa (1,1),
i r je skalar krivine mnogostrukosti.
U ovom radu, četvoro-dimenzionalni prostor-vreme, koji predstavlja
idealni fluid, sa Lorentz-ovom metrikom signature (+,+,+, -)
i ne nultom skalarnom krivinom, koji dozvoljava kvazikonformni tenzor
krivine, je razmotren. Pokazano je daako takav prostor vreme,
koji predstavlja fluid, sa jediničnim vremeski sličnim vektorskim poljem
brzine zadovoljava Einstein-ovu jednačinu sa kosmološkom konstantom i njegov
kvazi-konformni tenzor krivine je bez divergencije, tada je fluid slobodno-
smičući, nerotirajući i njegova gustina energije je konstantna nad hiperprostorom
ortogonalnim vektorsko polje brzina.