Vol.3, No 13, 2003 pp. 599-612
UDC 532.59 539.3 539.421 530.145.6
NEW CLASS OF SOLUTIONS OF THE REDUCED
WAVE EQUATION APPLICABLE TO CRACK PROBLEMS
RELATED TO GRADIENT ELASTICITY
David J. Unger1, Elias C. Aifantis2
1Department of Mechanical and Civil
Engineering, University of Evansville,
1800 Lincoln Avenue, Evansville, IN 47722, USA
2Center for Mechanics of Materials
and Instabilities, Michigan Technological University, 1400 Townsend Drive,
Houghton, MI 49931, USA
Using complex variables, the two-dimensional reduced wave equation is transformed
into an equation composed of two Hankel operators. Due to the symmetry
of these operators, solutions of the transformed equation appear as products
of Bessel functions, where each individual function's argument is associated
with one of the newly defined independent variables. When a particular
class of these solutions is identified with linear elastic displacement
for finite length cracks, stresses are generated at the tips possessing
the characteristic inverse square root singularity. As an application of
this special class of solutions, an internal crack problem subject to the
constitutive assumptions of the Aifantis strain gradient elastic theory
is posed and solved. In this particular gradient elasticity theory, the
analogous linear elastic displacement and stress is incorporated into the
solution of the corresponding gradient elasticity problem.
NOVA KLASA REŠENJA REDUKOVANE TALASNE
JEDNAČINE PRIMENLJIVE NA PROBLEME PRSLINA
U VEZI SA GRADIJENT ELASTIČNOŠĆU
Korišćenjem kompleksnih promenljivih, dvodimenzionalna redukovana talasna
jednačina transformiše se u jednačinu koja se sastoji od dva Hankel operatora.
Usled simetričnosti ovih operatora, rešenja transformisane jednačine javljaju
se kao proizvodi Besel funkcija, gde je svaki pojedinačni argument funkcije
vezan za jedan od novoodredjenih nezavisnih promenljivih. Kada se odredjena
klasa ovih rešenja identifikuje sa linearnim elastičnim pomeranjem za prsline
konačne dužine, stvaraju se naponi na vrhovima koji su karakteristični
po obrnutoj vrednosti kvadratnog korena. Kao primena ove posebne klase
rešenja, postavlja se i rešava problem unutrašnje prsline koji podleže
sustinskim pretpostavkama Aifantis elastične teorije gradijenta napona.
Unutar ove gradijentske teorije elastičnosti, analogno linearno elastično
pomeranje i napon uračunati su u rešenje odgovarajućeg problema gradijenta
elastičnosti.