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Abstract. Using complex variables, the two-dimensional reduced wave equation is
transformed into an equation composed of two Hankel operators. Due to the symmetry
of these operators, solutions of the transformed equation appear as products of Bessel
functions, where each individual function's argument is associated with one of the
newly defined independent variables. When a particular class of these solutions is
identified with linear elastic displacement for finite length cracks, stresses are
generated at the tips possessing the characteristic inverse square root singularity. As
an application of this special class of solutions, an internal crack problem subject to the
constitutive assumptions of the Aifantis strain gradient elastic theory is posed and
solved. In this particular gradient elasticity theory, the analogous linear elastic
displacement and stress is incorporated into the solution of the corresponding gradient
elasticity problem.

1. INTRODUCTION

In general, solutions of the reduced wave equation are very important for analyzing
vibration problems in elastic media. In particular, they appear in dynamic studies related
to the propagation of cracks in linear elastic material subject to harmonic excitation [1-3].
Besides dynamic crack problems, the reduced wave equation is also found as a governing
equation in equilibrium crack problems [4-13] that are modeled using a particular strain
gradient elasticity theory proposed and developed by Aifantis and co-workers [14-20].
Unlike its linear elastic counterpart, this gradient elasticity theory includes second order
spatial derivatives of displacement in the constitutive equations relating stress to strain.
This theory holds promise for modeling both non-local material behavior and material
damage. A description of the role that gradient elasticity can play in the context of
damage mechanics is provided in [21].
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Historically solutions of the reduced wave equation have presented great
mathematical difficulties for crack problems. This is especially true for finite length
cracks as the geometry of the crack itself introduces an inherent gage length [1], which
further complicates solution over the semi-infinite crack. Typically elliptical coordinates
are introduced for finite length crack problems, which allow separation of variables and a
solution of a particular boundary value problem in terms of an infinite series of Mathieu
functions [1-3]. However, textbooks on fracture mechanics rarely broach this subject
because of the complexity of Mathieu functions [22-24] and lack of familiarity with them
among engineers. In contrast, the solutions obtained here are represented in the form of
Bessel functions, which are more familiar to engineers than Mathieu functions, and are
more readily available in commercial software packages for evaluation.

The solution of the reduced wave equation, as derived here, takes the form of an
infinite series of products of Bessel functions. To the best of the authors' knowledge, this
particular class of solutions has not been explored previously, although it is likely to be
recoverable from other solutions, as Mathieu functions themselves are expressible in
terms of an infinite series of Bessel functions [22].

Attention is confined in this paper to the tearing mode of fracture, which is also
known variously as the antiplane shear crack problem or the mode III crack problem.
Mode III is chosen for this particular analysis because it is the simplest to describe
mathematically of the three principal modes of fracture. However, the class of solutions
derived here for the mode III problem can be readily extended to the other modes of
fracture as well.

For the mode III crack problem, the reduced wave equation for the out-of-plane
displacement w(x,y) assumes the form

2 2
w+1{a—w+a—wJ:0, (1)
X

where x, y represent Cartesian coordinates, and the constant ke R, k>0. The
mathematical properties of equation (1) change dramatically with the sign of k4. In a
mechanical sense, £ <0 corresponds to a system with a negative stiffness. For k>0,
solutions assume forms that are typical of eigenvalue problems, including multiplicity of
solutions for homogeneous boundary conditions. A detailed discussion of the effect of the
sign of k on solutions and boundary value problems related to (1) is given in [25].

For forced vibration problems [3], (1) is generated by substituting a displacement of

the form w*(x,y,t) = w(x,y)exp iot into the wave equation ow *, = (p/ G)V? w* , where t is

time, p is the density of the material, G is the shear modulus, and ® is the circular
frequency of the forcing function. In this particular case, (1) represents a combined
statement of Hooke's law and Newton's second law for a continuum, where k= p / Go.

Alternatively, for the Aifantis gradient elasticity theory, an inhomogeneous form of
(1) is determined from an integration of the fourth-order partial differential equation
V2w + kV*w =0, which results from combining the non-trivial equilibrium equation for
the antiplane crack problem with constitutive equations that relate shear strain and its
second-order spatial derivatives to the shear stress. The constant & in this case may be
interpreted as a material parameter, the gradient elastic shear modulus.
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The inhomogeneous form of (1), in the context of gradient elasticity theory, has the
left hand side of (1) equated to a harmonic function w, . Moreover, this function w is the
particular solution of this inhomogeneous partial differential equation, and it corresponds
physically to the displacement of the analogous traction boundary value problem as
formulated for linear elasticity [5]. The complete solution for gradient elasticity problem
is then obtained by superposing homogeneous solutions of the reduced wave equation to
the particular solution wy , subject to certain additional boundary conditions beyond those
required by linear elasticity.

In this regard it should be mentioned that there are several different types of
displacement solutions involving crack problems for this particular gradient elasticity
theory. Some solutions [4,5,10-13] were obtained under the assumption that the second
derivative of displacement normal to the crack surface is zero, i.e., dw,, = 0. For the case
k < 0, this additional boundary condition ensures that the solution is unique and that the
strain remains finite at the crack tip, unlike the corresponding strains of linear elasticity
theory [20]. Mathematically these solutions are quite complicated and closed form
solutions have been obtained only along the crack line. For £ > 0, uniqueness of solution
is lost; however, simple solutions which neglect the additional boundary condition along
the crack surface are derivable in the neighborhood of the crack tip, while retaining the
desirable feature that the strain remains finite at the tip [6,8]. These displacements are
oscillatory rather than monotonic as in the previous case reflecting a significant change in
response. However, when analogous asymptotic solutions, which neglect the additional
boundary condition, are analyzed for £ < 0, the crack surfaces open in a monotonic
fashion, but in a direction opposite to the applied load [6,8]. Consequently, these
solutions must be rejected on a physical basis despite the fact the strain remains bounded
at the crack tip. This and more recent studies indicate that gradient elasticity problems
where & < 0 and the additional boundary condition dw,, = 0 is satisfied are generally more
suitable for material modeling under static conditions.

However, gradient elasticity problems where k£ > 0 should not be dismissed altogether,
as there are exceptions to the rule. For example, an equation analogous to (1) with £> 0 is
derivable from a discrete model for application to granular materials with random
packing structure [26]. Models of this type with k& > 0 also provide insight into the
behavior of dynamic gradient elasticity problems prior to the onset of instability using the
dispersion of waves as a criterion [27-29]. Thus the interests of modern materials
scientists / engineers coupled with innate importance of dynamic solutions of linear
elastic crack problems provide more than sufficient justification for studying this new
class of solutions in more detail.

2. ANALYSIS
Defining the complex variables z and its complex conjugate z in terms of the real
variables (x,y), i.e., z=x + iy, Z = x—iy, one obtains the following alternative form of (1)
under this transformation of independent variables

2
oW _y. Q)

w+4k =
0z0z
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Now let two complex functions o.(z,z) and B(z,Z) be defined as follows

:%\/%[\/z+a—\jz—a] 3)

:%\/%[\/z+a +4z—a], “)

where a represents one half the length of an internal crack lying along the x-axis
(—a £ x < a) in an infinite plane, where the origin of the Cartesian coordinates is located at
the crack center. Now, using a chain rule, the partial derivative of w with respect to z is
described in terms of the complex functions (o.,3) as follows

dw _ dw do aw P

®)
9z dodz 8[3 oz

Differentiating o and B with respect to z and substituting the results into (5), produces

the expression

ow of ow _ow

=P == 6
9 ap? —uz){ﬁ a aaa} ©

Similarly, another chain rule involving Z generates the relationship
2
dw _da 9 (SW}_B,B d ( j 7)
dzoz 0z d0a\oz) o d9f\ oz

which upon substitution of dw/dz from (6) yields

9w _ 1 ,9%w  ow
0202 4k(B® - o [B W B_ﬁ_ Waﬁ] ®)

Using (8) to rewrite (2) in terms of (o), a partial differential equation composed of
two Hankel operators is generated, i.e.,

28w 8

w 2
o —toa——+ow=p"— [3— B2w. ©)
oo’ Ja 8[3 op
Assuming solutions of (9) to be of the form
w=A(m)B(p), (10)
separating variables, and setting both sides of the equal sign equal to a constant n yields
,0%4 04 ,0°B

—oc —+a—+o B* = [3—+BB =n’. (11)

e LA

Rewriting (11), one obtains the following system of ordinary differential equations
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o Wﬂx%ﬂa -n")4=0, (12)
2
ZngJng—ng(ﬁz—nz)B:o. (13)

Both equations (12) and (13) have linear independent solutions comprised of Bessel
functions of the first J,( ) and second Y, ( ) kinds respectively, i.e.,

A =4,(0) = D,J,(00) + E, Y, (00) (14)
B= Bn(B) = Fan(ﬁ) + GnYn(ﬁ)a (15)

where the subscript # indicates the order of the Bessel Function, and D, , E,, F,, and G,
represent arbitrary constants.
One particular class of these solutions is particularly useful for crack problems, i.e.,

w, =C,J, ()Y, (B), (16)
where C, is a constant. By differentiating (16) with respect to z one obtains
ow, C,
aZ - 2m [BJn (a)yn—l (B) O(Jn—l (OL)Y” (B)] . (17)

Now, as one approaches the two crack tips along the upper crack surface, i.e., as
x — *a, y = 0", the independent variables (c,B) approach the following limits

_a a

axﬁia,yﬁO" - ﬂ’ Bxaia,ya()" :im . (18)

Further, by employing the following identities [20, 21] for Bessel functions together
with (17) and (18), i.e.,

Ty (2= s (WY, (2) ===, m integer (19)
nz

J, ("™ z)=¢e""™] (z), m integer (20)

Y, (€™ z) = e ™™Y (z)+ 2isin(mnm) cot(nm)J, (z) , (21)

one can determine that the right hand side of (17) approaches asymptotically the
following relationship at the crack tips

C, .

, n eveninteger
aWn| +a ~ T 22—a2 (22)
aZ z—*a icn

——=—, n oddinteger,

wzt—a®

where 7 is the integer order of the Bessel functions in (16). Equation (22) is similar in
form to the denominator of the classic Westergaard stress function Z;; (z) [30], i.e.,
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Tz
Z111(Z)=ﬁ=
VZ —a

where T.. is the magnitude of the traction applied at infinity. The real and imaginary parts
of Zyare the antiplane shear stresses T, and T, respectively.

The denominator of (23) is the term responsible for the characteristic inverse square
root singularities found at the crack tips, i.e., z==a. As in the case of the Westergaard
stress function, the function w, of (16) is a complex function. This is due to the
asymmetry of the variables (z,z) in the definitions of (o.,B). Correspondingly, the strains
determined with the aid of (22) for gradient elasticity theory have the familiar inverse
square root singularities at the crack tips.

It is readily verified that the complex conjugate w, of the complex displacement w, of
(16) is found by interchanging the positions of z and z in that function, i.e., symbolically

(23)

w, =w(z,2) > W, =w(z,z). (24)

It follows immediately from (24) that the real and imaginary parts of w, are respectively
Re[w,]=w, +w,)/2, Im[w,]=(w,-w,)/2. (25)

Because of the symmetry with respect to z and z in both (2) and (24), w, will also
satisfy the reduced wave equation. In terms of two new complex functions o and [3*,
defined below,

a=0(z,z) > o*=0(z,z2),

_ _ (26)
B=B(z,2) »P*=B(.2),
the complex conjugate of w, is expressed as
W, =C,J, ()Y, (B*) 27

assuming real C,.
In Figure 1, the Im [w,] of (16) is plotted along y =0" for several integer values of the
Bessel function order n. Other parameters used in this plot, which are not shown on the
figure, are C,=a=1. This figure clearly indicates that the boundary conditions of zero
displacement are met at the crack tips, x ==1, y=0" for the values of n chosen. Also note
that curves for even values of n are odd functions of x; whereas, the curves for odd values of
n are even functions of x. All of the curves are continuous; however, the curve
corresponding to n = 1 fails to be smooth at the w-axis. Solutions for negative integer values
of n produce similar curves as their positive integer counterparts and are not marked on the
figure. The curve corresponding to » = 0 has been omitted from the figure as it is
discontinuous along the w-axis and proves unsuitable for the series expansion to follow.

Solutions of (16) for non-integer values of # are of little interest physically as they fail
to satisfy the boundary condition of zero displacement at both crack tips. This is the
consequence of identity (19), which fails to be satisfied for non-integer values of n.

The substitution of (16) and (27) into the second equation of (25) generates a form
that readily allows the determination of real engineering shear strains from the partial
derivatives of displacement, i.e.,

_ dIm[w,] _ dIm[w,]
T x dy

(28)
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Fig. 1. Mode Shapes of Displacement for Solutions of the Reduced Wave Equation
along Upper Crack Surface for Bessel Function Order n.

In Figure 1 all of the displacements exhibit vertical slopes at the crack tips. This
illustrates graphically that strain singularities in 7, exist at the crack tips.

Let us now examine the asymptotic behavior of the imaginary portion of w, as k — oo,
i.e., as o — 0, B — 0, where for the time being the constant C, will be set equal to one.
Using the asymptotic formulas found in [31], we find upon substitution into (16) that

| 1 T (oY
Im[J,,mc)Y,,(B)]IM—Im[ 7t1"(n+l)([3] ] n#0, (29)

where the ratio of gamma functions I'(n) / T'(n + 1) may be set equal to 1/ provided n is a
positive integer [24].
Expressed in terms of elementary complex variables, this expansion (29) is equivalent to

n

2
1M, (@)Y, B = Im| ——| == (—) 1| |. nz0. (30)
nm| a a

Note the asymptotic form of w, in (30) is a function only of z. Therefore as k grows
large, w, behaves harmonically, as is the case for the imaginary part of any analytical
function of z alone [30].

Toward removing the radical in (30), let us now introduce the elliptical coordinate
system (§,n), i.e.,

z=a cosh(§ + in) 31)

In this coordinate system, & and M represent an orthogonal family of confocal ellipses
and confocal hyperbolas. The transformation back to Cartesian coordinates from elliptical
follows by equating real and imaginary parts of (31) from opposite sides of the equal
sign, i.e.,

x=acosh&cosm, y=asinh&sinn. (32)

Upon substituting z from (31) into (30), one finds the asymptotic form of displace-
ment reduces to
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Im[J, (00, B) 4o = #e_"& sin(mm), n#0. (33)

For n = 1, relationship (33) is similar to the linear elastic displacement found for a
mode III crack in equilibrium with loads of uniform traction applied along the crack
faces. Along the upper crack surface y =0, the displacement (33) can be rewritten in
Cartesian coordinates as

Im[J, (@)Y, (B)]‘;Hw,y:y - ninsin[n arccosfj . —a<x<a, n#0. (34)

Alternatively, the displacement in (34) can be expressed in terms of the Chebyshev
polynomials [32] of the second kind U,( ) as

Im[J, ()Y, (B)]‘k—m,y:o* _ V1= (x/a)* U, ,(x/a), —a<x<a, n#0. (35

nm
Chebyshev polynomials are introduced because of their orthogonality properties,
which allow series expansions of arbitrary functions.
The solution w, can also be expressed in integral form as

z a _ 2
J,(@)Y, (®) =ﬁ\/; I, (EG =0k, (36)

which can be derived using the specific case below

T -2 1
Jn(oc)Yn(B)=j—,EI 5‘2“ ¢2Cn—1<cos¢)
1o +B* ~20Bcos

of a more general integral found in [33], together with an identity [24] for the special

Y,(\/oc2 +B> —2ocﬁcos¢)d¢, 37)

Gegenbauer polynomial C,11 (cosd), i.e.,

sin(n +1)d

1 —
Cn (COS ¢) - sin (I)

(3%)

It is interesting to note that the harmonic function given in (35) as the asymptotic
solution of displacement as k grows large is contained within the integrand of the exact
solution (36) of the reduced wave equation. In [26] it is proved that every solution of the
reduced wave equation is uniquely associated with a particular harmonic function
provided the region to which it is applies is simply connected. This property proved
useful in the derivation of equation (11) of [8] for a first-term expansion of the gradient
elasticity solution. The consequence of retaining only the first term of the solution is that
the domain changes effectively from a multiply connected region to a simply connected
region. Although (36) applies to a multiply connected region, its form somewhat
resembles equation (11) of [8].

In [32] the following expansion of an arbitrary function f'(x) is given in terms of
Chebyshev polynomials of the second kind

S =A1=2 2 p,U, (9. (39)
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1
Pn =% [ (U1 (x)dx (40)
|

Together with (36), one may conclude using linear superposition that solution of the
reduced wave equation for an internal crack of length 2a has the form

w= i"Pan(Oﬂ)Yn(B):;—n\ET J:/(:/_‘?Y](Jz(z—t)/k)dt. (41)

n=l1

By taking the imaginary part of (41), one obtains a real-valued displacement.

3. GRADIENT ELASTICITY APPLICATION

In the case of the Aifantis strain gradient elasticity theory, the governing equation for
the displacement of the mode III crack problem assumes the form of an inhomogeneous
reduced wave equation

2 2
W k@—éﬁ%} =W, (42)
> dy

where wy is the corresponding displacement of the analogous linear elastic crack problem.
As wy itself is a harmonic function, the solution of (42) can be decomposed into the sum
of two parts

w=wy+w,, (43)

where w; is a solution of the homogeneous reduced wave equation (1) with wy satisfying
Laplace's equation. As mentioned earlier in the introduction, the displacement from the
Aifantis gradient elasticity theory requires additional boundary conditions over those of
linear elasticity, as it is a solution of a fourth-order equation rather than a second-order
equation. Provided k < 0 the adoption of the boundary condition dw,, = 0 along the crack
surface guarantees uniqueness of solution and generates a solution for which the strain
remains bounded at the crack tip

For demonstration purposes, a simpler procedure will be adopted here as was
followed previously in [6] and [8].

An appropriate solution for displacement w, is sought which when added to the
solution for displacement wy, eliminates the strain singularity. Traction is unaffected by
w. terms in the Aifantis theory. In [6] and [8] the small-scale yielding or first term of the
linear elastic solution was used. Here the analogous operation will be performed for a
finite length crack using the exact linear elastic solution rather than the asymptotic
solution. As has been mentioned earlier, the solution is not unique for £ > 0 whether or
not the additional boundary condition dw,,, = 0 is satisfied.

The form of complex displacement w, for the classical mode III crack problem and
its derivative are
T 5 2 dwy, 7T, z

dz G 2,2

; (44)

where the physical or real-valued displacement is found from (44) by taking the Im [wy].
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By comparing (22) and second equation of (44), it is concluded that for odd-valued
integers n, the condition necessary to eliminate strain singularities at both cracks tips
simultaneously is

C,=—-1.1malG . (45)

Similarly, from (22) and (44) one can conclude that it is impossible to eliminate both
singularities simultaneously for even values of n, using a single term of the gradient
elasticity solution, as the partial derivatives of the functions dw, with respect to z are
even-valued functions of z while the derivative of w, with respect to z is an odd-valued
function of z.

Therefore simple solutions of real displacements having finite-valued strains at the
crack tips are of the form

w= Im[%’(\/ 22 —a? —mad, (W)Y, (B)ﬂ’ n odd integer. (46)

In Figure 2, three different displacement curves of (46) are plotted along the crack
surface y =0 for three different odd values of # and the parameters a=1 and 1..= G/ .
Note how the slopes of displacement at the crack tips have changed dramatically from
Figure 1. On closer inspection of the crack tip regions (not evident from the scale used on
Figure 2 except for case n = 3), one finds that the slope is zero, which indicates that the
strain v, is zero there.

-1 -0.5 0.5 1

Fig. 2. Displacement along Upper Crack Surface for Variations
in Bessel Function Order # for Gradient Elasticity Theory.

In Figure 3 the effect of variations in the parameter k& on displacement (46) are shown
for the case n = 3, a = 1, and T..= G/ . Observe how the slopes of the all curves tend
toward zero near the crack tips regardless of the value of &.

Displacement beyond the immediate crack region is shown in Figure 4 for the
parameters a=1 and T.=G/m. Figure 4 shows the antisymmetric pattern of
displacement relative to the x-axis, which is indicative of the mode III crack problem.
The figure also shows how the crack surfaces meet to form cusps at the crack tips, a
behavior reminiscent of the Barenblatt or Dugdale models [30], as has been pointed out
previously in a gradient elasticity context [10-13]. Also note that far from the crack line,
the displacement varies linearly in the y-w plane. This characteristic relates to the
asymptotic behavior of the linear elastic component (44) of the total displacement (46). In
contrast, the component of displacement from gradient elasticity decays as one recedes
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Fig. 3. Displacement along Upper Crack Surface for Variations in Parameter &

under Gradient Elasticity Theory.

Dimensional View of Displacement for Gradient Elasticity Theory.

Fig. 4. Three

from the crack region. One can also see from Figure 4 that the value of vy, will not be zero

but will instead have a finite value corresponding to

direction at x

at the crack tips as in the case of v, ,
the slope of the surface in the y-

0. This finite, but non-zero value

=+l,y=
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at the crack tips, comes from the dw/dz contribution to strain.

Solution (46) represents a solution analogous to the asymptotic gradient elasticity
solutions provided in [6] and [8]. Unlike the near crack tip or asymptotic solution, the
entire solution demonstrates that for finite length cracks different mode shapes appear
naturally. The entire solution also differs from the asymptotic in that v, is non-zero at the
crack tip.

Boundary value problems for gradient elastic crack problems, which fulfill the extra
boundary conditions dw,, = 0 and where k < 0, have yet to be studied using solutions of
the form (16). However, from previous analyses in coordinate systems other than (o), it
is known that if both conditions are satisfied then the strain remains bounded at the crack
tip under this gradient elasticity theory. It should also be pointed out that the strain
remains finite under this theory without recourse to extraneous forces, as are introduced
in the Barenblatt cohesive force model of the crack-tip process zone [30] and the Dugdale
strip model [30] of crack-tip plasticity.

In the context of material modeling, the Barenblatt-Dugdale type approach has been
used previously to simulate twinning [35], a special type of plastic deformation where
mirror images of the crystal structure form along boundaries. Because of the similarities
that exist between crack models using the Aifantis gradient elasticity theory and those of
Barenblatt and Dugdale, it is anticipated that twinning can also be modeled using gradient
elasticity theory.

4. CLOSING

The utility of general integral (41) and the associated series of Bessel functions in that
equation have yet to be explored for dynamics problems in linear elasticity. For example,
the integral in (41) can be inverted to yield f(z/a) as a complex integral of w. This has
been done for the analogous case of a simply connected region in [34] by solving a
Volterra integral equation. Once this inversion is performed, the function f{z/a) can be
determined from the specific form that w assumes along the length of the crack or those
of its first derivative along the length of the crack. These constitute either a Dirichlet or
Neumann type boundary value problem. The Dirichlet problem for the reduced wave
equation results from imposing a desired displacement profile representing a steady-state
vibrations problem in the form of a standing wave along the crack surface. Similarly, the
Neumann boundary value problem is associated with the imposition of the first derivative
of displacement normal to the crack surface. In the latter case, Hooke's Law can be used
to relate the derivative of displacement to stress and subsequently traction along the crack
faces, which vary as a sinusoidal function of time.
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NOVA KLASA RESENJA REDUKOVANE TALASNE JEDNACINE
PRIMENLJIVE NA PROBLEME PRSLINA
U VEZI SA GRADIJENT ELASTICNOSCU

David J. Unger, Elias C. Aifantis

Koriséenjem kompleksnih promenljivih, dvodimenzionalna redukovana talasna jednacina
transformise se u jednacinu koja se sastoji od dva Hankel operatora. Usled simetricnosti ovih
operatora, resenja transformisane jednacine javljaju se kao proizvodi Besel funkcija, gde je svaki
pojedinacni argument funkcije vezan za jedan od novoodredjenih nezavisnih promenljivih. Kada se
odredjena klasa ovih reSenja identifikuje sa linearnim elasticnim pomeranjem za prsline konacne
duzine, stvaraju se naponi na vrhovima koji su karakteristicni po obrnutoj vrednosti kvadratnog
korena. Kao primena ove posebne klase resenja, postavlja se i resava problem unutrasnje prsline
koji podleze sustinskim pretpostavkama Aifantis elasticne teorije gradijenta napona. Unutar ove
gradijentske teorije elasticnosti, analogno linearno elasticno pomeranje i napon uracunati su u
reSenje odgovarajuceg problema gradijenta elasticnosti.



