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Abstract. Using complex variables, the two-dimensional reduced wave equation is 
transformed into an equation composed of two Hankel operators. Due to the symmetry 
of these operators, solutions of the transformed equation appear as products of Bessel 
functions, where each individual function's argument is associated with one of the 
newly defined independent variables. When a particular class of these solutions is 
identified with linear elastic displacement for finite length cracks, stresses are 
generated at the tips possessing the characteristic inverse square root singularity. As 
an application of this special class of solutions, an internal crack problem subject to the 
constitutive assumptions of the Aifantis strain gradient elastic theory is posed and 
solved. In this particular gradient elasticity theory, the analogous linear elastic 
displacement and stress is incorporated into the solution of the corresponding gradient 
elasticity problem. 

1. INTRODUCTION  

In general, solutions of the reduced wave equation are very important for analyzing 
vibration problems in elastic media. In particular, they appear in dynamic studies related 
to the propagation of cracks in linear elastic material subject to harmonic excitation [1-3]. 
Besides dynamic crack problems, the reduced wave equation is also found as a governing 
equation in equilibrium crack problems [4-13] that are modeled using a particular strain 
gradient elasticity theory proposed and developed by Aifantis and co-workers [14-20]. 
Unlike its linear elastic counterpart, this gradient elasticity theory includes second order 
spatial derivatives of displacement in the constitutive equations relating stress to strain. 
This theory holds promise for modeling both non-local material behavior and material 
damage. A description of the role that gradient elasticity can play in the context of 
damage mechanics is provided in [21].  
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Historically solutions of the reduced wave equation have presented great 
mathematical difficulties for crack problems. This is especially true for finite length 
cracks as the geometry of the crack itself introduces an inherent gage length [1], which 
further complicates solution over the semi-infinite crack. Typically elliptical coordinates 
are introduced for finite length crack problems, which allow separation of variables and a 
solution of a particular boundary value problem in terms of an infinite series of Mathieu 
functions [1-3]. However, textbooks on fracture mechanics rarely broach this subject 
because of the complexity of Mathieu functions [22-24] and lack of familiarity with them 
among engineers. In contrast, the solutions obtained here are represented in the form of 
Bessel functions, which are more familiar to engineers than Mathieu functions, and are 
more readily available in commercial software packages for evaluation. 

The solution of the reduced wave equation, as derived here, takes the form of an 
infinite series of products of Bessel functions. To the best of the authors' knowledge, this 
particular class of solutions has not been explored previously, although it is likely to be 
recoverable from other solutions, as Mathieu functions themselves are expressible in 
terms of an infinite series of Bessel functions [22].  

Attention is confined in this paper to the tearing mode of fracture, which is also 
known variously as the antiplane shear crack problem or the mode III crack problem. 
Mode III is chosen for this particular analysis because it is the simplest to describe 
mathematically of the three principal modes of fracture. However, the class of solutions 
derived here for the mode III problem can be readily extended to the other modes of 
fracture as well.  

For the mode III crack problem, the reduced wave equation for the out-of-plane 
displacement w(x,y) assumes the form 
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where x, y represent Cartesian coordinates, and the constant k ∈ R, k > 0. The 
mathematical properties of equation (1) change dramatically with the sign of k. In a 
mechanical sense, k < 0 corresponds to a system with a negative stiffness. For k > 0, 
solutions assume forms that are typical of eigenvalue problems, including multiplicity of 
solutions for homogeneous boundary conditions. A detailed discussion of the effect of the 
sign of k on solutions and boundary value problems related to (1) is given in [25].  

 For forced vibration problems [3], (1) is generated by substituting a displacement of 
the form w*(x,y,t) = w(x,y)exp iωt into the wave equation *ttw∂ = (ρ/G)∇2 *w , where t is 
time, ρ is the density of the material, G is the shear modulus, and ω is the circular 
frequency of the forcing function. In this particular case, (1) represents a combined 
statement of Hooke's law and Newton's second law for a continuum, where k = ρ / Gω. 

Alternatively, for the Aifantis gradient elasticity theory, an inhomogeneous form of 
(1) is determined from an integration of the fourth-order partial differential equation 
∇2w + k∇4w = 0, which results from combining the non-trivial equilibrium equation for 
the antiplane crack problem with constitutive equations that relate shear strain and its 
second-order spatial derivatives to the shear stress. The constant k in this case may be 
interpreted as a material parameter, the gradient elastic shear modulus. 
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The inhomogeneous form of (1), in the context of gradient elasticity theory, has the 
left hand side of (1) equated to a harmonic function w0 . Moreover, this function w0 is the 
particular solution of this inhomogeneous partial differential equation, and it corresponds 
physically to the displacement of the analogous traction boundary value problem as 
formulated for linear elasticity [5]. The complete solution for gradient elasticity problem 
is then obtained by superposing homogeneous solutions of the reduced wave equation to 
the particular solution w0 , subject to certain additional boundary conditions beyond those 
required by linear elasticity. 

In this regard it should be mentioned that there are several different types of 
displacement solutions involving crack problems for this particular gradient elasticity 
theory. Some solutions [4,5,10-13] were obtained under the assumption that the second 
derivative of displacement normal to the crack surface is zero, i.e., ∂wnn = 0. For the case 
k < 0, this additional boundary condition ensures that the solution is unique and that the 
strain remains finite at the crack tip, unlike the corresponding strains of linear elasticity 
theory [20]. Mathematically these solutions are quite complicated and closed form 
solutions have been obtained only along the crack line. For k > 0, uniqueness of solution 
is lost; however, simple solutions which neglect the additional boundary condition along 
the crack surface are derivable in the neighborhood of the crack tip, while retaining the 
desirable feature that the strain remains finite at the tip [6,8]. These displacements are 
oscillatory rather than monotonic as in the previous case reflecting a significant change in 
response. However, when analogous asymptotic solutions, which neglect the additional 
boundary condition, are analyzed for k < 0, the crack surfaces open in a monotonic 
fashion, but in a direction opposite to the applied load [6,8]. Consequently, these 
solutions must be rejected on a physical basis despite the fact the strain remains bounded 
at the crack tip. This and more recent studies indicate that gradient elasticity problems 
where k < 0 and the additional boundary condition ∂wnn = 0 is satisfied are generally more 
suitable for material modeling under static conditions.  

However, gradient elasticity problems where k > 0 should not be dismissed altogether, 
as there are exceptions to the rule. For example, an equation analogous to (1) with k > 0 is 
derivable from a discrete model for application to granular materials with random 
packing structure [26]. Models of this type with k > 0 also provide insight into the 
behavior of dynamic gradient elasticity problems prior to the onset of instability using the 
dispersion of waves as a criterion [27-29]. Thus the interests of modern materials 
scientists / engineers coupled with innate importance of dynamic solutions of linear 
elastic crack problems provide more than sufficient justification for studying this new 
class of solutions in more detail. 

2. ANALYSIS 

Defining the complex variables z and its complex conjugate z  in terms of the real 
variables (x,y), i.e., z = x + iy, iyxz −= , one obtains the following alternative form of (1) 
under this transformation of independent variables 

 04
2

=
∂∂

∂+
zz

wkw . (2) 



602 D. J. UNGER, E. C. AIFANTIS 

Now let two complex functions ),( zzα  and ),( zzβ be defined as follows 
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where a represents one half the length of an internal crack lying along the x-axis 
(−a ≤ x ≤ a) in an infinite plane, where the origin of the Cartesian coordinates is located at 
the crack center. Now, using a chain rule, the partial derivative of w with respect to z is 
described in terms of the complex functions (α,β) as follows 
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Differentiating α and β with respect to z and substituting the results into (5), produces 
the expression 
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Similarly, another chain rule involving z  generates the relationship 
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which upon substitution of ∂w/∂z from (6) yields 
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Using (8) to rewrite (2) in terms of (α,β), a partial differential equation composed of 
two Hankel operators is generated, i.e.,  

 wwwwww 2
2

2
22

2

2
2 β+

β∂
∂β+

β∂
∂β=α+

α∂
∂α+

α∂
∂α . (9) 

Assuming solutions of (9) to be of the form 

 w = A(α)B(β), (10) 

separating variables, and setting both sides of the equal sign equal to a constant n2 yields 
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Rewriting (11), one obtains the following system of ordinary differential equations  
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Both equations (12) and (13) have linear independent solutions comprised of Bessel 
functions of the first Jn( ) and second Yn( ) kinds respectively, i.e., 

 A = An(α) = DnJn(α) + EnYn(α) (14) 

 B = Bn(β) = FnJn(β) + GnYn(β), (15) 

where the subscript n indicates the order of the Bessel Function, and Dn , En , Fn , and Gn 
represent arbitrary constants. 

One particular class of these solutions is particularly useful for crack problems, i.e., 
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where Cn is a constant. By differentiating (16) with respect to z one obtains 
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Now, as one approaches the two crack tips along the upper crack surface, i.e., as 
x → ±a, y → 0+, the independent variables (α,β) approach the following limits 
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Further, by employing the following identities [20, 21] for Bessel functions together 
with (17) and (18), i.e., 
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one can determine that the right hand side of (17) approaches asymptotically the 
following relationship at the crack tips 
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where n is the integer order of the Bessel functions in (16). Equation (22) is similar in 
form to the denominator of the classic Westergaard stress function ZIII (z) [30], i.e., 
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where τ∞ is the magnitude of the traction applied at infinity. The real and imaginary parts 
of ZIII are the antiplane shear stresses τy and τx respectively. 

The denominator of (23) is the term responsible for the characteristic inverse square 
root singularities found at the crack tips, i.e., z = ±a. As in the case of the Westergaard 
stress function, the function wn of (16) is a complex function. This is due to the 
asymmetry of the variables ),( zz in the definitions of (α,β). Correspondingly, the strains 
determined with the aid of (22) for gradient elasticity theory have the familiar inverse 
square root singularities at the crack tips. 

 It is readily verified that the complex conjugate nw  of the complex displacement wn of 
(16) is found by interchanging the positions of z and z  in that function, i.e., symbolically 

 ),(),( zzwwzzww nn =→= . (24) 

It follows immediately from (24) that the real and imaginary parts of wn are respectively 
 . 2/)(]Im[      , 2/)(]Re[ nnnnnn wwwwww −=+=  (25) 

Because of the symmetry with respect to z and z in both (2) and (24), nw  will also 
satisfy the reduced wave equation. In terms of two new complex functions α* and β*, 
defined below, 
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the complex conjugate of wn is expressed as 
 *)(*)( βα= nnnn YJCw , (27) 
assuming real Cn. 

 In Figure 1, the Im [wn] of (16) is plotted along y = 0+ for several integer values of the 
Bessel function order n. Other parameters used in this plot, which are not shown on the 
figure, are Cn = a = 1. This figure clearly indicates that the boundary conditions of zero 
displacement are met at the crack tips, x = ±1, y = 0+ for the values of n chosen. Also note 
that curves for even values of n are odd functions of x; whereas, the curves for odd values of 
n are even functions of x. All of the curves are continuous; however, the curve 
corresponding to n = 1 fails to be smooth at the w-axis. Solutions for negative integer values 
of n produce similar curves as their positive integer counterparts and are not marked on the 
figure. The curve corresponding to n = 0 has been omitted from the figure as it is 
discontinuous along the w-axis and proves unsuitable for the series expansion to follow. 

Solutions of (16) for non-integer values of n are of little interest physically as they fail 
to satisfy the boundary condition of zero displacement at both crack tips. This is the 
consequence of identity (19), which fails to be satisfied for non-integer values of n. 

The substitution of (16) and (27) into the second equation of (25) generates a form 
that readily allows the determination of real engineering shear strains from the partial 
derivatives of displacement, i.e., 
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Fig. 1. Mode Shapes of Displacement for Solutions of the Reduced Wave Equation  
along Upper Crack Surface for Bessel Function Order n. 

In Figure 1 all of the displacements exhibit vertical slopes at the crack tips. This 
illustrates graphically that strain singularities in γx exist at the crack tips. 

Let us now examine the asymptotic behavior of the imaginary portion of wn as k → ∞, 
i.e., as α → 0, β → 0, where for the time being the constant Cn will be set equal to one. 
Using the asymptotic formulas found in [31], we find upon substitution into (16) that 
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where the ratio of gamma functions Γ(n) / Γ(n + 1) may be set equal to 1/n provided n is a 
positive integer [24]. 

Expressed in terms of elementary complex variables, this expansion (29) is equivalent to  
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Note the asymptotic form of wn in (30) is a function only of z. Therefore as k grows 
large, wn behaves harmonically, as is the case for the imaginary part of any analytical 
function of z alone [30]. 

Toward removing the radical in (30), let us now introduce the elliptical coordinate 
system (ξ,η), i.e., 
 z = a cosh(ξ + iη) (31) 

In this coordinate system, ξ and η represent an orthogonal family of confocal ellipses 
and confocal hyperbolas. The transformation back to Cartesian coordinates from elliptical 
follows by equating real and imaginary parts of (31) from opposite sides of the equal 
sign, i.e., 
 x = a cosh ξ cos η,   y = a sinh ξ sin η. (32) 

Upon substituting z from (31) into (30), one finds the asymptotic form of displace-
ment reduces to 
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For n = 1, relationship (33) is similar to the linear elastic displacement found for a 
mode III crack in equilibrium with loads of uniform traction applied along the crack 
faces. Along the upper crack surface y = 0+, the displacement (33) can be rewritten in 
Cartesian coordinates as 
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Alternatively, the displacement in (34) can be expressed in terms of the Chebyshev 
polynomials [32] of the second kind Un( ) as 
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Chebyshev polynomials are introduced because of their orthogonality properties, 
which allow series expansions of arbitrary functions. 

The solution wn can also be expressed in integral form as 
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which can be derived using the specific case below  
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of a more general integral found in [33], together with an identity [24] for the special 
Gegenbauer polynomial )(cos1 φnC , i.e., 
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It is interesting to note that the harmonic function given in (35) as the asymptotic 
solution of displacement as k grows large is contained within the integrand of the exact 
solution (36) of the reduced wave equation. In [26] it is proved that every solution of the 
reduced wave equation is uniquely associated with a particular harmonic function 
provided the region to which it is applies is simply connected. This property proved 
useful in the derivation of equation (11) of [8] for a first-term expansion of the gradient 
elasticity solution. The consequence of retaining only the first term of the solution is that 
the domain changes effectively from a multiply connected region to a simply connected 
region. Although (36) applies to a multiply connected region, its form somewhat 
resembles equation (11) of [8]. 

In [32] the following expansion of an arbitrary function f (x) is given in terms of 
Chebyshev polynomials of the second kind 
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Together with (36), one may conclude using linear superposition that solution of the 
reduced wave equation for an internal crack of length 2a has the form 
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By taking the imaginary part of (41), one obtains a real-valued displacement. 

3. GRADIENT ELASTICITY APPLICATION 

 In the case of the Aifantis strain gradient elasticity theory, the governing equation for 
the displacement of the mode III crack problem assumes the form of an inhomogeneous 
reduced wave equation 
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where w0 is the corresponding displacement of the analogous linear elastic crack problem. 
As w0 itself is a harmonic function, the solution of (42) can be decomposed into the sum 
of two parts 
 w = w0 + w+ , (43) 

where w+ is a solution of the homogeneous reduced wave equation (1) with w0 satisfying 
Laplace's equation. As mentioned earlier in the introduction, the displacement from the 
Aifantis gradient elasticity theory requires additional boundary conditions over those of 
linear elasticity, as it is a solution of a fourth-order equation rather than a second-order 
equation. Provided k < 0 the adoption of the boundary condition ∂wnn = 0 along the crack 
surface guarantees uniqueness of solution and generates a solution for which the strain 
remains bounded at the crack tip 

 For demonstration purposes, a simpler procedure will be adopted here as was 
followed previously in [6] and [8]. 

 An appropriate solution for displacement w+ is sought which when added to the 
solution for displacement w0, eliminates the strain singularity. Traction is unaffected by 
w+ terms in the Aifantis theory. In [6] and [8] the small-scale yielding or first term of the 
linear elastic solution was used. Here the analogous operation will be performed for a 
finite length crack using the exact linear elastic solution rather than the asymptotic 
solution. As has been mentioned earlier, the solution is not unique for k > 0 whether or 
not the additional boundary condition ∂wnn = 0 is satisfied. 

 The form of complex displacement w0 for the classical mode III crack problem and 
its derivative are 
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where the physical or real-valued displacement is found from (44) by taking the Im [w0].  
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 By comparing (22) and second equation of (44), it is concluded that for odd-valued 
integers n, the condition necessary to eliminate strain singularities at both cracks tips 
simultaneously is  
 Cn = −τ∞πa/G . (45) 

Similarly, from (22) and (44) one can conclude that it is impossible to eliminate both 
singularities simultaneously for even values of n, using a single term of the gradient 
elasticity solution, as the partial derivatives of the functions ∂wn with respect to z are 
even-valued functions of z while the derivative of w0 with respect to z is an odd-valued 
function of z. 

Therefore simple solutions of real displacements having finite-valued strains at the 
crack tips are of the form 
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In Figure 2, three different displacement curves of (46) are plotted along the crack 
surface y = 0+ for three different odd values of n and the parameters a = 1 and τ∞ = G / π. 
Note how the slopes of displacement at the crack tips have changed dramatically from 
Figure 1. On closer inspection of the crack tip regions (not evident from the scale used on 
Figure 2 except for case n = 3), one finds that the slope is zero, which indicates that the 
strain γx is zero there. 

 

 
Fig. 2. Displacement along Upper Crack Surface for Variations  

in Bessel Function Order n for Gradient Elasticity Theory. 

In Figure 3 the effect of variations in the parameter k on displacement (46) are shown 
for the case n = 3, a = 1, and τ∞ = G / π. Observe how the slopes of the all curves tend 
toward zero near the crack tips regardless of the value of k. 

Displacement beyond the immediate crack region is shown in Figure 4 for the 
parameters a = 1 and τ∞ = G / π. Figure 4 shows the antisymmetric pattern of 
displacement relative to the x-axis, which is indicative of the mode III crack problem. 
The figure also shows how the crack surfaces meet to form cusps at the crack tips, a 
behavior reminiscent of the Barenblatt or Dugdale models [30], as has been pointed out 
previously in a gradient elasticity context [10-13]. Also note that far from the crack line, 
the displacement varies linearly in the y-w plane. This characteristic relates to the 
asymptotic behavior of the linear elastic component (44) of the total displacement (46). In 
contrast, the component of displacement from gradient elasticity decays as one recedes  
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Fig. 3.  Displacement along Upper Crack Surface for Variations in Parameter k  

under Gradient Elasticity Theory. 

 

 
Fig. 4. Three-Dimensional View of Displacement for Gradient Elasticity Theory. 

from the crack region. One can also see from Figure 4 that the value of γy will not be zero 
at the crack tips as in the case of γx , but will instead have a finite value corresponding to 
the slope of the surface in the y-direction at x = ±1, y = 0. This finite, but non-zero value 
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at the crack tips, comes from the zw ∂∂ / contribution to strain. 
Solution (46) represents a solution analogous to the asymptotic gradient elasticity 

solutions provided in [6] and [8]. Unlike the near crack tip or asymptotic solution, the 
entire solution demonstrates that for finite length cracks different mode shapes appear 
naturally. The entire solution also differs from the asymptotic in that γy is non-zero at the 
crack tip. 

Boundary value problems for gradient elastic crack problems, which fulfill the extra 
boundary conditions ∂wnn = 0 and where k < 0, have yet to be studied using solutions of 
the form (16). However, from previous analyses in coordinate systems other than (α,β), it 
is known that if both conditions are satisfied then the strain remains bounded at the crack 
tip under this gradient elasticity theory. It should also be pointed out that the strain 
remains finite under this theory without recourse to extraneous forces, as are introduced 
in the Barenblatt cohesive force model of the crack-tip process zone [30] and the Dugdale 
strip model [30] of crack-tip plasticity. 

In the context of material modeling, the Barenblatt-Dugdale type approach has been 
used previously to simulate twinning [35], a special type of plastic deformation where 
mirror images of the crystal structure form along boundaries. Because of the similarities 
that exist between crack models using the Aifantis gradient elasticity theory and those of 
Barenblatt and Dugdale, it is anticipated that twinning can also be modeled using gradient 
elasticity theory.  

4. CLOSING 

The utility of general integral (41) and the associated series of Bessel functions in that 
equation have yet to be explored for dynamics problems in linear elasticity. For example, 
the integral in (41) can be inverted to yield f (z/a) as a complex integral of w. This has 
been done for the analogous case of a simply connected region in [34] by solving a 
Volterra integral equation. Once this inversion is performed, the function f(z/a) can be 
determined from the specific form that w assumes along the length of the crack or those 
of its first derivative along the length of the crack. These constitute either a Dirichlet or 
Neumann type boundary value problem. The Dirichlet problem for the reduced wave 
equation results from imposing a desired displacement profile representing a steady-state 
vibrations problem in the form of a standing wave along the crack surface. Similarly, the 
Neumann boundary value problem is associated with the imposition of the first derivative 
of displacement normal to the crack surface. In the latter case, Hooke's Law can be used 
to relate the derivative of displacement to stress and subsequently traction along the crack 
faces, which vary as a sinusoidal function of time. 
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NOVA KLASA REŠENJA REDUKOVANE TALASNE JEDNAČINE 
PRIMENLJIVE NA PROBLEME PRSLINA  
U VEZI SA GRADIJENT ELASTIČNOŠĆU 

David J. Unger, Elias C. Aifantis 

Korišćenjem kompleksnih promenljivih, dvodimenzionalna redukovana talasna jednačina 
transformise se u jednačinu koja se sastoji od dva Hankel operatora. Usled simetričnosti ovih 
operatora, rešenja transformisane jednačine javljaju se kao proizvodi Besel funkcija, gde je svaki 
pojedinačni argument funkcije vezan za jedan od novoodredjenih nezavisnih promenljivih. Kada se 
odredjena klasa ovih rešenja identifikuje sa linearnim elastičnim pomeranjem za prsline konačne 
dužine, stvaraju se naponi na vrhovima koji su karakteristični po obrnutoj vrednosti kvadratnog 
korena. Kao primena ove posebne klase rešenja, postavlja se i rešava problem unutrašnje prsline 
koji podleže suštinskim pretpostavkama Aifantis elastične teorije gradijenta napona. Unutar ove 
gradijentske teorije elastičnosti, analogno linearno elastično pomeranje i napon uračunati su u 
rešenje odgovarajućeg problema gradijenta elastičnosti. 


