Vol.3, No 11, 2001 pp.223-230
UDC 531.22:539.421:624.073(045)
STRESS STATE AND STRAIN ENERGY
DISTRIBUTION
AT THE VICINITY OF ELLIPTICAL CRACK
WITH COMPRESSION FORCES ACTING ON IT'S CONTOUR
Dragan B. Jovanović1,
Milena B. Jovanović2
1Faculty of Mechanical Engineering,
University of Niš,
Beogradska 14, 18000 Niš, Yugoslavia, e-mail: jdragan@masfak.masfak.ni.ac.yu
2Vojvode Tankosića 9, 18000 Niš, Yugoslavia
e-mail: mjovanovic@masfak.masfak.ni.ac.yu
Abstract. Model of elliptical crack
with contour pressurized by continual uniform forces is of interest and
has found application in mechanical and civil engineering, as well as in
geomechanics and geology. At solving of this problem stress functions in
elliptical coordinate system can be used (Timoshenko, Goodier), or the
region outside the elliptical contour can be transformed at simpler shape
and find appropriate stress function, accordingly by application of complex
variable function and conformal mapping method (Muskhelishvili). Stress
functions for the case of plane crack suggested by Westergaard and Sneddon
can be applied. All this solutions are related on the problem of plane
stress state in a plate, where three-dimensional stress state at the vicinity
of crack is neglected.
Analytical solutions for problem of elliptical
shaped crack in an infinite plate by applying of complex variable function
and conformal mapping method are presented in this paper. Crack is subjected
to uniform pressure forces on it's contour, and plane stress state in all
points of the plate is assumed. Comparable three-dimensional model of crack
in the plate of finite dimensions is done. By application of finite element
method, diagrams off stress and deformation distribution at the vicinity
of crack, as well as at whole plate, are done.
Diagrams of stress components, in selected
sections are presented. Strain energy for characteristic directions y =
0, z = 0, ... zk and z = 0, x = 0, ... xk is calculated by using well-known
relations of theory of elasticity. Then, surface of the strain energy for
points in the middle plane z = 0, and plane perpendicular to it y = 0,
in front of the crack tip, by using best fitting curve, and best fitting
surface, and iteration procedure is reconstructed. Conclusion on three-dimensional
stress state at the vicinity of crack tip, is derived from obtained stress
diagrams, and estimation up to which distance from crack tip three-dimensional
stress state exist is done. Also, from reconstructed strain energy surfaces,
it's concentration and three-dimensional distribution is visible. On certain
distance from the crack strain energy gets constant value, and at the most
part of the plate is "undisturbed state".
STANJE NAPONA
I
STANJE ENERGIJE DEFORMACIJE
U OKOLINI ELIPTIČNE
PRSLINE
PRI DEJSTVU SILA
PRITISKA NA NJENOJ KONTURI
Model prsline eliptičnog oblika na čijoj konturi dejstvuju kontinualne
sile pritiska, od interesa je i ima primenu u mašinskom, građevinskom inženjeringu,
kao i u mehanici tla i geologiji. U rešavanju ovog problema mogu se koristiti
naponske funkcije u eliptičnom koordinatnom sistemu (Timoshenko, Goodier)
ili se može transformisati oblast izvan eliptične konture u jednostavniji
oblik i pronaći odgovarajuća naponska funkcija, odnosno primeniti metoda
funkcije kompleksne promenljive i konformnog preslikavanja (Muskhelishvili).
Mogu se primeniti i naponske funkcije predložene od Westergaard-a i Sneddon-a
za slučaj ravne prsline. Sva ova rešenja odnose se na problem ravnog stanja
napona i ploči, pri čemu je zanemareno lokalno trodimenzionalno stanje
napona u okolini prsline.
U radu su prikazana analitička rešenja problema prsline eliptičnog
oblika u beskonačnoj ploči, primenom funkcije kompleksne promenljive i
konformnog preslikavanja. Prslina je izložena kontinualno jednako raspodeljenim
silama pritiska po konturi i pretpostavljeno je ravno stanje napona u svim
tačkama ploče. Načinjen je takođe uporedni prostorni model prsline u ploči
konačnih dimenzija i primenom metode konačnih elemenata dobijeni su dijagrami
rasporeda napona i deformacija u okolini prsline, kao i u čitavoj ploči.
Prikazani su dijagrami komponentnih napona u izabranim ravnim presecima
ploče. Specifična energija deformacije je izračunata preko poznatih relacija
iz teorije elastičnosti za karakteristične pravce y = 0, z = 0, ... zk
i z = 0, x = 0, ... xk. Zatim je korišćenjem best- fitting krivih i best-fitting
površina, kroz postupak uzastopnih iteracija, izvršena rekonstrukcija površine
energije deformacije za tačke u središnjoj ravni ploče z = 0 i za ravan
upravnu na nju y = 0. Na osnovu dobijenih dijagrama napona, donet je zaključak
o trodimenzionalnom stanju napona u blizini vrha prsline, sa procenom do
kog rastojanja od vrha prsline se javlja trodimenzionalno stanje napona.
Takođe se iz rekonstruisanih površina energije deformacije vidi njena koncentracija
i njen trodimenzionalni raspored ispred vrha prsline. Na određenom rastojanju
od prsline ona dobija konstantnu vrednost i u najvećem delu ploče vlada
"neporemećeno stanje".