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Abstract. Model of elliptical crack with contour pressurized by continual uniform forces
is of interest and has found application in mechanical and civil engineering, as well as in
geomechanics and geology. At solving of this problem stress functions in elliptical
coordinate system can be used (Timoshenko, Goodier), or the region outside the elliptical
contour can be transformed at simpler shape and find appropriate stress function,
accordingly by application of complex variable function and conformal mapping method
(Muskhelishvili). Stress functions for the case of plane crack suggested by Westergaard
and Sneddon can be applied. All this solutions are related on the problem of plane stress
state in a plate, where three-dimensional stress state at the vicinity of crack is neglected.
Analytical solutions for problem of elliptical shaped crack in an infinite plate by applying
of complex variable function and conformal mapping method are presented in this paper.
Crack is subjected to uniform pressure forces on it's contour, and plane stress state in all
points of the plate is assumed. Comparable three-dimensional model of crack in the plate
of finite dimensions is done. By application of finite element method, diagrams off stress
and deformation distribution at the vicinity of crack, as well as at whole plate, are done.
Diagrams of stress components, in selected sections are presented. Strain energy for
characteristic directions y = 0, z = 0, ... zk and z = 0, x = 0, ... xk is calculated by using
well-known relations of theory of elasticity. Then, surface of the strain energy for points in
the middle plane z = 0, and plane perpendicular to it y = 0, in front of the crack tip, by
using best fitting curve, and best fitting surface, and iteration procedure is reconstructed.
Conclusion on three-dimensional stress state at the vicinity of crack tip, is derived from
obtained stress diagrams, and estimation up to which distance from crack tip three-
dimensional stress state exist is done. Also, from reconstructed strain energy surfaces, it's
concentration and three-dimensional distribution is visible. On certain distance from the
crack strain energy gets constant value, and at the most part of the plate is "undisturbed
state".
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1. INTRODUCTION. FRAMEWORK

Griffith theory assumed that cracks exist or they are initiated in solid body when the
tensile stresses are reached the value when the strain energy realize rate is hire then the
rate at which energy is gained by creation of new free surface. To consider the simplest
physical model of crack based on Griffith theory, it is needed to determine the stress
distribution in the vicinity of the crack and to determine the strain-energy distribution due
to the crack existence. The most serious limitation of this theory is assumption that
direction of crack growth is known as an a priori. Sih proposed the local strain energy
density in a material element as the dominant criterion, which governs crack
development. He proposed strain energy density factor S for material element at a finite
distance or  from the point of fracture initiation, where S is given by relation [1], [12]:

defoo Ar
Vd
WdrS ′== (1)

where: 
Vd
Wd  is strain energy density per unit volume, or defA′ -specific strain energy.

When elastic deformation is predominant in a body, relation or linear elasticity can be
used to describe strain-energy distribution [1], [2], [15]:
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Three-dimensional model of the plate, with crack of an elliptical contour is done in
this paper Fig. 1. It is assumed that all -round constant pressure p = 1 N/mm2 is applied at
the direction perpendicular to the elliptical contour-surface of the crack. Finite element
method is used for determining of the stress tensor components in the neighborhood of an
elliptical crack. Three-dimensional mesh of finite elements is generated, as it is presented
on Fig. 2. Elliptical hole at the middle of the plate is taken as model of Griffith crack [3],
[4], [5], [6]. Elliptical crack has semi-major axis a = 5 mm and semi-minor axis
b = 0.5 mm. As material of the plate is taken polyester Palatal P-6 with Young's elasticity
modulus E = 4460 N/mm2, and Poisson's modulus ν = 0.38.

crack  front

!

  
Fig. 1. Fig. 2.
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One quarter of square plate with dimensions 100 × 100 mm, and 10 mm thick, is
taken for analyzing of stress state and strain energy state. Cartesian coordinates x, y and z
with center at the middle of the plate are used. So, x is between 0 and +50 mm, y is
between 0 and +50 mm, and z is −5 mm and up to +5 mm mm5+ .

2. STRESS DISTRIBUTION

Distributions of stress components σx, σy, σz, τxy in the middle plane are presented on
Fig. 3, 4, 5 and 6. Distributions of stress components σx, σy, σz, τxy at the plane section
y = 0 of the plate are presented on Fig. 7, 8, 9, and 10 respectively. Diagrams of the stress
components σx, σy, σz, τxy, τyz and τzx for y = 0, and z = 0 are presented on Fig. 11. Same
stress components for x = 0, and z = 0, and on the crack tip for x = 4.9 mm, and z = 0 are
presented on Fig. 12, and Fig. 13 respectively.

 
Fig. 3. Fig. 4.

Fig. 5. Fig. 6.

It is visible on Fig. 11 that gradient of normal stress components σx, σy, σz is
extremely high in front of the crack tip, in crack direction. Shear stress component τxy has
values different than zero up to distance between one, and 1.3 plate thickness. Other
shear stresses τyz, and τzx are equal to zero. It is visible on Fig. 12 that normal stress
component σx is different than zero up to one plate thickness, σy is different than zero on
distance up to 1.5 plate thickness, and σz is different than zero up to distance half of plate
thickness. This figure presents stress state at the middle plane of the plate. It is evidently
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on Fig. 13 that normal stress σx is different than zero up to distance of about one plate
thickness, and that change it's sign at same point close to the crack tip (calculated
distance is y = 1.515 mm). Normal stress σy is different than zero up one plate thickness,
and change it's sign from plus to minus on calculated distance y = 2.525 mm from the
crack tip. Normal stress component σz is different than zero, and has high gradient up to
distance of y = 0.2 mm mm2.0y =  from the crack tip. Shear stress component τxy is
different than zero up to distance of two plate thickness from crack tip. Other shear
stresses τyz, and τzx are equal to zero, and this is consistent whit theory.

 
Fig. 7. Fig. 8.

Fig. 9. Fig. 10.

Fig. 11. Fig. 12.
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3. STRAIN ENERGY DISTRIBUTION

Specific strain energy or strain energy
density per unit volume is calculated by using
data from stress diagrams presented on
previous figures, where interpolation and
smoothing of stress function is previously
done. For calculation of strain energy in
characteristic directions FORTRAN program
named "Defen" is created. Equation (2) well
known in theory of elasticity [2] is used for
calculation.

Fig. 14. Fig. 15.

Diagram of specific strain energy for
direction z = 0, and y = 0 is presented on Fig.
14. Diagram of specific strain energy for
direction x = 4.9 mm, and z = 0 is shown on
Fig. 15 and diagram of specific strain energy at
the crack tip front x = 4.93 mm and y=0 is
shown on Fig. 16.

By using data from diagrams of the specific
strain energy for various directions and by
gridding and smoothing the surfaces which are
presenting distribution of specific deformation
energy in planes z = 0, F = F(x,y), and y = 0,
F = F(x,z) are reconstructed. Surface of the

specific deformation energy F = F(x,z) for plane y = 0 is shown on Fig. 17. Surface of the
specific strain energy F = F(x,y) for plane z = 0 is presented on Fig. 18. It is visible on
Fig. 18 that distribution of strain energy resulted with high value of energy in front of
crack tip, where the peak of energy stored in material exists. It is visible on Fig. 16 as
well as on Fig. 17 that specific strain energy is increasing from middle plane 0z =  to
front and back free surface of the plate, and that peaks of energy are close to free surfaces
off the plate. This is observed only in region close to the crack front, up to distance of
about 0.25 of plate thickness, from the crack front.

Fig. 13.

Fig. 16
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Fig. 17. Fig. 18.

4. LOCAL EFFECT OF THE CRACK

Analysis in this paper shows that crack and loads on it's surface are generating local
stress state and local strain energy distribution up to the one and half plate thickness from
the crack, and it is visible on the presented figures. It is evidently that all strain energy for
analyzed case of crack shape, and loading conditions, is stored at region of the plate near
by the crack surface up to distance of one plate thickness.

Results calculated by analytical solutions well known in literature [1], [9], [11], [14],
[15], and in the papers [3], [4], [5], [6], are comparable with analyzed problem, but these
analytical solutions are clearly two-dimensional and their framework is plane problem of
theory of elasticity.

5. CONCLUSIONS. DISCUSSION

Strain energy density is accepted criterion for crack development [1], [7], [11], [12],
[13], [14]. It is consequently important to know distribution of strain energy in the crack
vicinity. Strain energy density factor proposed by G. C. Sih is representing strain energy
per unit of volume and it is calculated by using asymptotic formulas in papers of Sih [1],
[12]. In this paper strain-energy surfaces are reconstructed. They are presenting the strain
energy distribution in middle plane z = 0, and in plane y=0, of the plate with an elliptical
crack subjected to uniform internal pressure in it's contour surface.

From diagrams of the stress components is visible that stress state is three-dimensional
at the vicinity of the crack tip. Normal stress σz is different then zero on distance up to one
plate thickness from the crack front at direction of crack propagation, and up to half of plate
thickness at direction perpendicular to the crack. It is also visible that stresses σx, σy, σz are
depending on coordinate z up to one plate thickness from the crack front at crack direction,
and at direction perpendicular to the crack. Obtained results and diagrams are consistent
with experimental evidence [8]. Stress distribution, and strain energy behaviour is analyzed
in references [10], [13], [16], but in those papers, specific strain energy distribution for
analyzed problems was not given in the form of three-dimensional surface.
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STANJE NAPONA I STANJE ENERGIJE DEFORMACIJE
U OKOLINI ELIPTIČNE PRSLINE

PRI DEJSTVU SILA PRITISKA NA NJENOJ KONTURI
Dragan B. Jovanović, Milena B. Jovanović

Model prsline eliptičnog oblika na čijoj konturi dejstvuju kontinualne sile pritiska, od interesa
je i ima primenu u mašinskom, građevinskom inženjeringu, kao i u mehanici tla i geologiji. U
rešavanju ovog problema mogu se koristiti naponske funkcije u eliptičnom koordinatnom sistemu
(Timoshenko, Goodier) ili se može transformisati oblast izvan eliptične konture u jednostavniji
oblik i pronaći odgovarajuća naponska funkcija, odnosno primeniti metoda funkcije kompleksne
promenljive i konformnog preslikavanja (Muskhelishvili). Mogu se primeniti i naponske funkcije
predložene od Westergaard-a i Sneddon-a za slučaj ravne prsline. Sva ova rešenja odnose se na
problem ravnog stanja napona i ploči, pri čemu je zanemareno lokalno trodimenzionalno stanje
napona u okolini prsline.
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U radu su prikazana analitička rešenja problema prsline eliptičnog oblika u beskonačnoj ploči,
primenom funkcije kompleksne promenljive i konformnog preslikavanja. Prslina je izložena
kontinualno jednako raspodeljenim silama pritiska po konturi i pretpostavljeno je ravno stanje
napona u svim tačkama ploče. Načinjen je takođe uporedni prostorni model prsline u ploči
konačnih dimenzija i primenom metode konačnih elemenata dobijeni su dijagrami rasporeda
napona i deformacija u okolini prsline, kao i u čitavoj ploči.

Prikazani su dijagrami komponentnih napona u izabranim ravnim presecima ploče. Specifična
energija deformacije je izračunata preko poznatih relacija iz teorije elastičnosti za karakteristične
pravce y = 0, z = 0, ... zk i z = 0, x = 0, ... xk. Zatim je korišćenjem best- fitting krivih i best-fitting
površina, kroz postupak uzastopnih iteracija, izvršena rekonstrukcija površine energije deformacije
za tačke u središnjoj ravni ploče z = 0 i za ravan upravnu na nju y = 0. Na osnovu dobijenih
dijagrama napona, donet je zaključak o trodimenzionalnom stanju napona u blizini vrha prsline, sa
procenom do kog rastojanja od vrha prsline se javlja trodimenzionalno stanje napona. Takođe se iz
rekonstruisanih površina energije deformacije vidi njena koncentracija i njen trodimenzionalni
raspored ispred vrha prsline. Na određenom rastojanju od prsline ona dobija konstantnu vrednost i
u najvećem delu ploče vlada "neporemećeno stanje".


