Vol.2, No 10, 2000 pp. 1191-1202
UDC 531.231.531.5:517.925.4(045)
QUADRATIC
CONSERVATION LAWS
FOR ONE-DEGREE-OF-FREEDOM
MASS VARIABLE OSCILLATORS
Livija Cvetićanin
Faculty of Engineering, 21000 Novi Sad,
Trg D. Obradovica 6, Yugoslavia
Abstract. In this paper the one-degree-of-freedom
mass variable oscillators are considered. The mass variation is a function
of time. Due to mass variation the reactive force acts. The motion of this
system is described with a second order differential equation with time
variable parameters. To find the closed form solution of the equation is
impossible. In this paper the conservation laws of the systems are considered.
The system has a Lagrangian. To form the invariants of the system the Noether's
approach is applied. It is applied for determining the conservation laws
of the rheo-linear, pure-cubic oscillator and a pendulum with variable
mass and length.
KVADRATNI
ZAKONI ODRŽANJA ZA OSCILATORE PROMENLJIVE MASE SA JEDNIM STEPENOM SLOBODE
U ovom radu se razmatraju oscilatori promenljive
mase sa jednim stepenom slobode. Promena mase je funkcija vremena. Usled
promene mase se javlja reaktivna sila. Kretanje ovog sistema je opisano
diferencijalnom jednačinom drugog reda sa vremenski promenljivim parametrima.
Nemoguće je naći rešenje ove jednačine u zatvorenom obliku. U ovom radu
razmatraju se zakoni održanja sistema. Za formiranje invarijanti sistema
primenjen je Noether-in pristup. On je primenjen za određivanje zakona
održanja reo-linearnog, čisto kubnog oscilatora i klatna pro-menljive mase
i dužine.