Vol.2, No 3, 2005 pp. 261 - 275
UDC 004.032.26
TOWARD NEURAL NETWORK-BASED
PROFIT OPTIMIZATION
Dragoljub Pokrajac1, Jugoslav Milutinović2, Zoran Obradović1
1Center for Information Science and Technology, Temple University
303 Wachman Hall (038-24), 1805 N. Broad St., Philadelphia, PA 19122, USA
{pokie,zoran}@ist.temple.edu
2The Fox School of Business and Management, Temple University
1810 N. 13th St., Philadelphia, PA 19122, USA
jmilutin@sbm.temple.edu

A novel technique for profit optimization is proposed. The technique provides recommendations to management, with an objective of maximizing a profit function using a neural network-based decision support system. Applicability of the proposed method is evaluated on simulated precision agriculture data. The obtained profit increase is compared to the known optimum. Experimental results suggest that the neural network-based profit optimization techniques may lead to a significant profit increase; with radial-basis function networks outperforming multi-layer perceptrons. The quality of provided recommendations depends on the possibility of learning regression models on training data from all regions of the attribute space.
Key Words:  Neural Networks, Multilayer Perceptron, Radial-Basis Function Networks, Profit Optimization, Economy, Precision Agriculture

OPTIMIZACIJA PROFITA
ZASNOVANA NA NEURONSKIM MREŽAMA
U ovom radu predlaže se nova tehnika za optimizaciju profita. Tehnika pruža preporuke menadžmentu, sa ciljom maksimizacije profitne funkcije koristeći sistem za odlučivanje baziran na neuronskim mrežama. Primenjivost predložene tehnike je ilustrovana na simuliranim podacima iz domena precizne agrotehnike. Dobijeni priraštaj profita poredi se sa poznatim optimumom. Eksperimentalni rezultati sugerišu da primena sistema za optimizaciju profita zasnovanih na neuronskim mrežama može da dovede do značajnog povećanja profita, pri čemu radial basis funkcije daju rezultate bolje od višeslojnih perceptrona. Kvalitet preporuka koji sistem pruža zavisi od mogućnosti učenja regresionog modela na podacima iz svih oblasti prostora atributa.