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Abstract. A novel technique for profit optimization is proposed. The technique provides 
recommendations to management, with an objective of maximizing a profit function 
using a neural network-based decision support system. Applicability of the proposed 
method is evaluated on simulated precision agriculture data. The obtained profit 
increase is compared to the known optimum. Experimental results suggest that the 
neural network-based profit optimization techniques may lead to a significant profit 
increase; with radial-basis function networks outperforming multi-layer perceptrons. 
The quality of provided recommendations depends on the possibility of learning 
regression models on training data from all regions of the attribute space.  
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1. INTRODUCTION 

According to one of central postulates in economics, each firm or entrepreneur governs 
its business towards profit optimization by maximization of revenue and minimization of 
explicit and implicit costs [1]. For instance, in agricultural economics [2] the primary aim 
is the production of maximal crop quantity, with optimal explicit costs and controlled use 
of potentially hazardous materials such as fertilizers and pesticides (to restrict implicit 
costs). In the past, the profit optimization usually has not been performed explicitly, but 
rather by means of complex market interactions. The reason for this was in part the scarcity 
of data necessary to estimate profit-cost dependence but also the absence of proper 
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knowledge discovery apparatus to model this dependence, which may be highly non-linear 
due to the economic law of diminishing returns [1].  

New economy of the post-industrial age [3] provides capabilities of collecting and 
storing huge amounts of data in various areas. In e-commerce, the existence of click-stream 
data makes possible better customer relationship management resulting in a higher 
profitability [4]. Novel data warehousing and decision support techniques [5,6] have 
opened prospects for advanced location-dependent management of retail chains and other 
industries with spatially deployed facilities. In precision agriculture [7], new technological 
breakthroughs such as global positioning system  [8] and affordable remote sensing [9] 
enable gathering a lot of spatial-temporal data and performing site-specific fertilizer rec-
ommendation. On the other hand, the development of powerful computational resources 
along with advances in machine learning and statistical techniques [10-14] make training 
and application of complex non-linear models practical and cost-effective. 

Feed-forward neural networks, as non-linear, adaptive systems and universal approxi-
mators of piecewise continuous functions on a compact domain [15], have been applied in 
economics for classification, time series analysis and forecasting and modeling bounded 
artificial agents [16]. In addition, in agroeconomics, they have been proposed for estima-
tion of fertilizer response function [17] and determination of relationships among field 
attributes [18]. However, the problem examined in our study is different and aimed toward 
examining applicability of non-linear modeling using neural networks for profit optimiza-
tion tasks.  

In this paper, we propose profit maximization through neural network-based optimiza-
tion techniques. After the presentation of the proposed methodology in Section II, we il-
lustrate the effects of performed profit optimization on two groups of realistic precision 
agriculture data sets in Section III. In the concluding Section IV, we emphasize the im-
portance of proper model choice and the availability of suitable training examples for re-
gression model learning to obtain useful recommendations for the management interven-
tion and discuss overall prospectives of neural network application for optimization of 
profit and other economic indexes.  

2 METHODOLOGY 

A. Model 

A response (e.g. revenue, crop yield in agriculture, etc) is considered to be a non-linear 
function of controllable attributes (e.g. quantity of material, labor and energy, concentra-
tions of fertilizers in agriculture) as well as of non-controllable attributes (e.g. interest rate, 
soil type and terrain attributes in agriculture) on a multiple-dimensional region F. Such a 
region may involve a spatial (e.g. location of a particular outlet in a retailer network, spa-
tial coordinates at agricultural field), or a temporal component (if temporal or spatial-tem-
poral processes are considered). At each sampling location s∈F the values of m controlla-
ble attributes f1(s),…,fm(s) can be increased by application of  treatments ∆fi(s)≥0 i=1,…,m, 
whereas the values of n uncontrollable attributes fm+1(s),…, fm+n(s) cannot be altered by 
management interventions. The goal is to determine non-negative treatments ∆f = 
[∆f1 ∆f2…∆fm]T that maximize profit improvement on F defined as difference of increase in 
gross revenue and increase of the total production costs due to applied treatment:  
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)(TotalCost)(ueGrossReven)(Profit fff ∆∆−∆∆=∆∆ . (1) 

Here, increase in gross revenue )(ueGrossReven f∆∆  can be expressed as 

( ) ssf dYc
F
∫ ∆=∆∆ )(ueGrossReven  (2) 

where c is the unit price of the output (e.g. product, crop…) and ∆Y(s) is increment of the 
response due to treatments at sampling point s. 

Increase of the total production costs due to treatments ∆TotalCost(∆f) is equal to the 
sum of costs wi∆fi(s) associated to each particular treatment integrated on the whole do-
main F and a fixed cost w0  independent of the applied treatments, as shown at the fol-
lowing equation:  
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where w=[w1 w2…wm]T denotes  a vector of weights associated to particular attributes (e.g. 
unit prices of energy or fertilizer). 

In addition, we define the average increase of profit and the average cost of treatment 
due to particular treatment values ∆f on the whole region F as, respectively,  
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Here, ∫=
F

dF s)measure(  represents a quantitative description of the region F (e.g. in 

agriculture it may be defined as the area of the observed field). 
Due to eq. (2)-(3), we may rewrite eq. (1) as 
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where ∆p(s) is a localized profit increase (per unit of F) at a sampling point s, defined as 
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We assume additivity of eq. (1), such that the increase of profit on region F is maxi-
mized when a localized profit increase, eq. (7), is maximized at every point s. We define 
the following vector of optimal treatments  

∆fopt(s)=[∆f1,opt(s) ∆f2,opt (s)…∆fm,opt(s)]T (8) 

that maximizes ∆p(s) so that 
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Observe that the optimal treatments, eq. (8), also maximize the following normalized 
profit 

∑
=

−=∆
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ii fwYp
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** )()()( sss , (10) 

where micww ii ,...,1,/* == , are ratios of an input cost and an output price for each 
controllable attribute and Y(s) is the response at sampling point s. 
The result of a profit optimization procedure is the vector of treatment recommendations  

T
mfff ])(ˆ)(ˆ)(ˆ[)(ˆ

21 ssssf ∆∆∆=∆ …  (11) 

which is ideally equal to the estimated  optimal treatments ∆fopt(s).  
When treatment recommendations are observed in attributes space where each coordi-

nate represents one controllable attribute, the treatment recommendations can be repre-
sented as a vector, with intensity proportional to the cost of applied treatments )(ˆ sii fw ∆  and 
direction depending on the ratio of treatment quantities, as demonstrated in Fig. 1. For 
large values of attributes, an increase of attributes due to treatment does not lead to profit 
increase (due to the law of diminishing returns [1]). Hence the optimal treatment for all 
controlled attributes on these points is zero. In this study, the corresponding zone of the 
attribute space is referred to as the region of saturation.  

 
Fig. 1. Recommended treatments and the region of saturation for profit that is dependent 

on three attributes (Capital, Labor and Material in this example). A treatment vector 
is plotted for each point in the attribute space out of the region of saturation. In the 
region of saturation, bounded on the plot with a mesh surface, the recommended 
treatments are zero. 

In practice, the response and attributes are observable only on a finite set of sampling 
points s within the observed region F. In addition, due to technological limitations (e.g. 
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finite accuracy of devices for on-the-field fertilizer application [19]) treatment rates can be 
feasibly varied only in discrete portions: 

.,...,1},,....,2,,0{)( max,

^
miffff iiii =∆δδ∈∆ s  (12) 

Here, δfi is the resolution by which the i-th controllable attribute can be adjusted, and 
∆fi, max is the maximal allowed treatment value, which may be related to governmental or 
environmental regulatory [20,21].  

B. Optimization Method and Model  

The profit optimization is a special case of the constrained maximization problem [22]. 
However, in our case the localized profit increase p(s) as a function of treatments is not 
known in the closed form and the problem cannot be solved using the theory of non-linear 
constrained optimizations [23]. To optimize this incompletely specified functional depend-
ence in this paper we consider the following modeling for optimization by profit function 
approximation.  

We treat the response Y(s) at each sampling point as a function of both controllable and 
non-controllable attributes (see Fig. 2). The function  
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is estimated using a regression model, and the estimate )(ˆ sY is subsequently plugged into  
eq. (10) in order to maximize the following determinant function: 
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The estimated treatments, defined at eq. (11), are obtained as differences  

mifff iii ,...,1,)(ˆ ' =−=∆ s  (16) 

where mifi ,...,1,' =  are the results of the constrained maximization of the determinant eq. (14). 
 

 
 
 
  
 
   
   
 

Fig 2. Response modeling for profit optimization. 
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Using this technique, profit as a function of controllable attributes can be maximized by 
independent as well as by simultaneous optimization of site-specific treatment rates, as 
illustrated in Fig. 3. In independent optimization, the optimal treatment is obtained for each 
attribute separately. For each controllable attribute fi, i=1,…,m, the estimated treatment 
rate is computed using eq. (16), where the value of i-th attribute f 'i is chosen to maximize 
the discriminant value di(f1,...fi−1, f 'i, fi+1,..., f 'm+n) under the constraint f 'i ≥ fi, while 
remaining attributes keep their initial values. Independent optimization can in principle be 
performed using a linear search [24]. However, due to eq. (12), in considered domains it is 
sufficient to perform exhaustive search on a finite and fairly small set of allowed 
fertilization rates.  Independent optimization works best when the response is a separable 
function of attributes that do not interact significantly. 

 
Fig. 3. Illustration of independent and simultaneous optimization for a hypothetical case 

where profit depends on two controllable attributes (the dependence shown as a ‘wire’ 
surface on the plot). In both optimization methods, a management recommendation is 
equal to the difference of the estimated optimal attribute value (after the treatment) 
and the initial attribute value (or zero if this difference is negative). 

Simultaneous optimization aims towards a global maximization of financial gain as a 
function of all administered treatments. Using standardized optimization techniques 
(e.g.[25]), through an iterative process, all the values f 'i, i =1 ,…,m are simultaneously 
updated towards an increase of the determinant function. The main drawback of this 
method is potential danger of detecting a local instead of the global maximum and sensi-
tivity on initial values for f 'i. Also, this technique may be more time intensive as compared 
to an independent optimization. 

The modeling introduced here involves an estimation of regression models, which can 
be done using various parametric and non-parametric techniques.  

In linear models [26], the response y is represented as a linear function of attributes 
x1,…,xn: 
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In the presence of first-order attribute interactions [27], the model is still linear in pa-
rameters, but the response is a quadratic polynomial of attributes 
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We will refer this model to as a polynomial model with first-order interactions. 
In this paper, we compare these polynomial models to an application of multi-layer feed-
forward neural networks with sigmoidal (MLP) and radial-basis (RBF) activation functions 
[11]. The applied multi-layer neural networks have m+n inputs, and the output is a linear 
function ),...,( 1 nmxxy + of L hidden neuron activation functions 
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In multi-layer perceptrons (MLP) activation functions hl are logistic sigmoids: 
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In radial basis functions network (RBF) the l-th activation function depends on the 
Mahalanobis distance [13] between the input vector x=[x1,…,xm+n]T and a vector 
cl=[c1,k,…,cm+n,l]T that determines the center of the l-th basis function. The shape of the 
function is specified by a positive-definite "spread" matrix Σl . More precisely,  
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In a special case, Σl is a diagonal matrix completely specified with the radius ρ [11], 
such that 
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Applied multi-layer neural networks are trained using standard learning algorithms 
such as Levenberg-Marquardt algorithm [28].  

C. Performance Evaluation 

When a profit optimization is performed on real-world data, the true effects of a man-
agement intervention can be determined using single-factor analysis of variance [26]. 
However, such experiments are expensive and require an implementation of randomization 
strategies for experimental regions F, which is particularly difficult to accomplish when the 
observed phenomenon is heterogeneous (with high variability of attributes through 
different sampling points s). In contrast, for simulated data, we can compare obtained 
recommendations with known optima and thus determine true quality of provided 
estimates. There are several ways to evaluate the quality of treatment recommendations. 
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One can estimate the coefficient of determination R2 [26] as a measure of similarity be-
tween optimal and estimated treatments )(ˆ

, soptif∆  and )(ˆ sif∆  for the i-th controllable attrib-
ute. However, R2 is not suitable when non-linear modeling is applied, since in this case 
model residuals may be non-orthogonal to the regressor [29].  

Another possibility is to use Pearson's coefficient of correlation r [26] between the 
predicted and the optimal treatment. The coefficient of correlation measures the strength of 
the linear relationship between predicted and optimal fertilization rate but its usefulness 
when this dependence is non-linear is also limited. Observe that both r and R2 portray the 
quality of recommendations for each attribute independently instead of providing a global 
assessment of the adopted treatment policy. To rectify this problem we propose a com-
parison of the average profit AverageProfit( f̂∆ ), computed using eq. (4) when the recom-
mended treatments mifi ,...,1,ˆ =∆  are applied, with the optimal average profit Aver-
ageProfit(∆fopt= optf∆ ) achievable through the optimal fertilization rates, eq. (8), and com-
pute the profitability of recommended treatments as: 

E( f̂∆ )AverageProfit( f̂∆ )/AverageProfit( optf∆ )×100%. (23) 

3. RESULTS 

The proposed techniques were evaluated on realistic precision agriculture data generated 
using a spatial data simulator [30]. In contrast to an evaluation on real-life data, this allows to 
compare profit resulting from provided treatment recommendations with the known optimum.  

Two groups of ten datasets were generated with spatial statistics corresponding to a 
wheat field in Idaho [31]. Each data set consisted of four spatial layers, containing samples 
of simulated controllable soil fertility attributes (concentrations of nitrogen, phosphorus, 
and potassium in the top 30.5cm of soil) and the crop yield. Data layers were generated on 
a common 10m uniform grid and the size of each layer was 800m×400m. All attributes 
were approximately normally distributed with the means and standard deviations 
determined according to properties of real-world data [31-33]. Crop yield was generated 
using a plateau model [30,34]. In this model, the response was not sensitive on an attribute 
above a pre-specified threshold. Hence, the higher thresholds resulted with the smaller 
percentage of data samples for which yield could take a maximum value, and therefore 
with the decrease of the average yield (see Fig. 4). In the Group 1 of datasets, plateau 
thresholds for all attributes were equal to the attribute means and the average simulated 
yield was 0.286 kg/m2. For the Group 2 of datasets we simulated fields with significant 
deficiency in all the nutrients, which resulted in the decrease of the average yield to 
0.169 kg/m2. This was achieved by setting each plateau threshold to be equal to the corre-
sponding attribute mean increased by a 1.5 attribute standard deviation (see Table 1). 
Profit optimization experiments to provide treatment recommendations for fertilization 
rates were performed assuming a wheat price of $0.11/kg and a unit fertilizer cost of 
$0.55/kg (these values are based on Oregon wheat price data [35] and a profit management 
study [36]). Maximal allowed treatment values ∆fi,max (see eq. (12)) were specified so that 
concentrations of nitrogen, phosphorus and potassium after the treatment could not exceed 
100ppm, 50ppm and 125ppm, respectively. 
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Fig. 4. Plateau functions applied to generate the response for the datasets in the Group 1 

and Group 2.  

Table 1. Properties of experimental data sets. For each attribute, the mean and standard 
deviation (in percents of the mean value) are shown. Plateau thresholds 
corresponding to each attribute are shown for both groups of generated datasets. 

Attribute  
Nitrogen Phosphorus Potassium 

Mean (ppm) 40 12 68 Attribute  
parameters Std (ppm) 6 4 20 

Group 1 40 12 68 Plateau  thresholds  
(ppm) Group 2 49 18 98 

For each group of the generated datasets, we evaluated the performance of the pro-
posed methods (modeling with simultaneous or independent optimization) combined with 
various regression models (linear model, polynomial model with first order interactions; 
multi-layer perceptrons (MLP) and radial-basis function (RBF) networks). The reported 
estimated mean and standard deviation of the achieved profitability, eq. (23), are obtained 
through the application of a particular optimization technique. For each combination of an 
optimization method and a regression model, experiments were performed in five replica-
tions, each time randomly choosing two datasets from the considered group—one for 
training of a regression model and the other to perform and evaluate treatment predictions. 
Parameters of a linear model and polynomial model with first-order interactions were es-
timated using the ordinary least-squares method [26]. MLP neural networks were trained 
using the Levenberg-Marquardt algorithm [28]. Hidden neurons of RBF networks were 
specified by spread matrices from eq. (22) with a pre-specified radius ρ and neurons with 
centers ci randomly chosen—without replacement—out of training set attribute examples 
[37]. Simultaneous optimization was performed using a sequential quadratic programming 
method [38]. In each replication, the training and evaluation of neural networks was re-
peated ten times with different initial random weights.  

For both groups of datasets, linear modeling, eq. (17), could not provide useful results, due to 
the non-linear nature of the observed phenomena. For the datasets from the Group 1, useful 
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treatment recommendations that led to the profitability close to 100% were obtained using RBF 
and polynomial models with first order interactions. For example, simultaneous optimization 
with RBF provided an average profitability of 89% (see Table 2). Due to the nature of plateau 
model applied to generate data (where each attribute contributed independently to the response), 
independent optimization could provide good results (in case of polynomial models with first 
order interactions even outperforming the simultaneous optimization). RBF were capable of 
outperforming the parametric model for both independent and simultaneous optimization, but 
their performance was sensitive to the choice of the number of centers L and radius ρ, as it can 
be seen from Fig. 5. While further maximization of the profitability by fine-tuning the network 
parameters was not attempted, we can observe that the smaller radii required the larger number 
of neurons to provide the similar profitability. 

Table 2. The estimated mean and standard deviation of profitability obtained on simulated 
fields from the Group 1. Results are shown for both independent and simultaneous 
optimization, using polynomial models with first-order interactions, RBF (with 
L=50 hidden neurons and radius ρ =10) and MLP (number of hidden neurons 
varied from 2 to 100). 

Optimization method Regression Model 
Independent Simultaneous 

Radial-basis functions (RBF) 88±5% 89±4% 
Polynomial with first-order interactions 80±2% 68±1% 
Multi-layer perceptron (MLP) <0 <0 
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Fig. 5. The average profitability, eq. (23), for experiments performed at the first group of 
the fields (standard deviations were smaller than 4%). Simultaneous optimization 
was performed using RBF, and results are presented as a function of the number of 
hidden neurons L and the neuron radius ρ. 
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When using MLP networks, we varied the number L of hidden neurons (in range of 2 to 
100) but the obtained treatment recommendations consistently led to the excessive application 
of fertilizer, which ultimately did not result with increase of profit (Table 2). This 
phenomenon can be explained by examining the shape of estimated response/attribute 
dependence. In Fig. 6 we plotted true and typical estimated crop yield dependence vs. two 
attributes (nitrogen and phosphorus) on one of the experiment repetitions. On the same plots, 
we showed the values of examples from a training dataset. We can see that the estimated 
functions obtained using RBF and MLP had different shapes. Due to a functional form of a 
neuron activation function, eq. (21), RBF networks had also a good generalization on test 
examples in the regions of the attribute space distant from the training examples. In contrast, 
due to a specific functional form of sigmoidals, eq. (20), response dependence estimated by 
MLP networks typically tend to increase in the regions of saturation (where the true response 
dependence on attributes was constant). This behavior can lead to significant overestimation 
of treatments, which actually occurred in our experiments.  

 
Fig. 6. Data examples from a training set from the Group 1 of datasets and the estimated crop 

yield dependence vs. nitrogen and phosphorus concentrations using (a) MLP with 
L=10 hidden neurons (b) RBF with L=50 hidden neurons and radius ρ =10.  
Response dependencies are shown for a fixed concentration of potassium of 68ppm.   
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In the datasets from the Group 2 (that exhibit a significant deficiency in all attributes, see 
Table 1), the majority of training examples corresponded to the regions in the attribute space 
below the plateau model thresholds. Hence, compared to the data from the first group, it was 
more difficult to properly estimate the behavior of response/attribute dependence in the 
regions of saturation and provide treatment recommendations that could lead to a significant 
profit increase. In this case, useful results were obtained only by using RBF networks, where 
performance again strongly depended on the network topology (number L of hidden neurons 
and the radius ρ). The best results were obtained for networks with L=100 hidden neurons 
with radius ρ =10. The simultaneous optimization had a tendency to converge to a local 
instead of the global maximum, which resulted with better performance of the independent 
optimization (profitability of 32±3% and 28±3% were achieved using independent and 
simultaneous optimization, respectively, see Table 3). Due to the lack of training examples in 
the region of saturation (see Fig. 1 for the definition), the inductive bias [14] of the applied 
regression model substantially influenced the shape of the estimated response dependency at 
the higher attribute values. However, as can be observed in Fig. 7 where we plotted true and 
typical estimated response/attribute dependence taken from one of the experiment repetitions, 
RBF networks were less sensitive to these effects, which caused their performance to be still 
acceptable, although worse than for datasets in the first group. 

 
Fig. 7. Data examples from a training set from the Group 2 of datasets and the estimated crop 

yield dependence vs. nitrogen and phosphorus concentrations using (a) MLP with 
L=10 hidden neurons (b) RBF with L=50 hidden neurons and radius ρ = 10.  
Response dependencies are shown for a fixed concentration of potassium of 68ppm. 
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Table 3. The estimated mean and standard deviation of profitability obtained on simulated 
fields from the Group 2. Results are shown for both independent and simultaneous 
optimization, using polynomial models with first-order interactions, RBF (with 
L=100 hidden neurons and radius ρ =10) and MLP (number of hidden neurons 
varied from 2 to 100). 

Optimization method Regression Model 
Independent Simultaneous 

Radial-basis functions (RBF) 32±3% 28±3% 
Polynomial with first-order interactions <0 <0 
Multi-layer perceptron (MLP) <0 <0 

4. CONCLUSIONS 

In this study, we have considered profit optimization using neural networks. After an 
overview of the proposed method, we have presented experimental results on realistic data 
from precision agriculture using different regression models. We have shown a clear ad-
vantage of neural networks with radial-basis (RBF) activation functions compared to sig-
moidal neural networks (MLP) and parametric models (linear models and polynomial 
models with first-order interactions). Although we were not able to entirely explore a vast 
class of examined regression models (which would include a thorough study of the influ-
ence of model topology specifications and learning algorithm choice), we have demon-
strated that neural network-based profit optimization techniques may provide useful treat-
ment recommendations and lead to a significant profit increase. However, this is possible 
only if a sufficient number of data examples are available at the region of the attribute 
space where no treatment is necessary (here named the region of saturation) and if the 
inductive bias introduced by an applied regression model is not harmful for prediction out 
of the range of training examples.  

The research presented in this study emphasizes the necessity of future work in the de-
velopment of regression models suitable for profit optimization. Due to the observed sen-
sitivity of provided treatment recommendations on the behavior of the estimated regression 
model in the region of saturation, learning algorithms that minimize weighted sum of esti-
mation errors (with weights depending on the attribute values) may provide regression 
models more suitable for profit maximization. Also, we anticipate that further improve-
ments in profit optimization may be possible owing to an application of non-linear regres-
sion models that are capable of exploiting correlation within response values due to spatial 
and spatial-temporal placement of examples [39-41].  

The main goal of this study was to investigate the potentials of neural network-based 
treatment recommendations on data generated using fairly simple simulation models. 
Hence, we did not present results on profit optimization in the presence of uncontrollable 
attributes (with the "state of nature" values that cannot be increased by applied manage-
ment interventions [42]) or under the assumption of missing attributes (where some of 
relevant attributes may not be available for the regression model training). Also, we have 
not explored important issues of the quality and availability of data examples [42]. How-
ever, it is clear that a thorough analysis of these factors should be performed prior to a 
practical application of the proposed techniques on economic and other real-world data. 
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The methods explored in this paper are based on a two-stage procedure where regres-
sion models fitting and profit optimization are performed separately. Our work in progress 
includes the development of a methodology to integrate these two processes, which, in 
addition to profit optimization, would provide optimization of other micro- and macro-
economic indexes, including productivity and efficiency [42, 43]. We expect that this ap-
proach would ultimately result in decision support systems with more versatile applicabil-
ity as compared to the techniques currently available. 
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OPTIMIZACIJA PROFITA 
ZASNOVANA NA NEURONSKIM MREŽAMA 

Dragoljub Pokrajac, Jugoslav Milutinović, Zoran Obradović 

U ovom radu predlaže se nova tehnika za optimizaciju profita. Tehnika pruža preporuke 
menadžmentu, sa ciljom maksimizacije profitne funkcije koristeći sistem za odlučivanje baziran na 
neuronskim mrežama. Primenjivost predložene tehnike je ilustrovana na simuliranim podacima iz 
domena precizne agrotehnike. Dobijeni priraštaj profita poredi se sa poznatim optimumom. 
Eksperimentalni rezultati sugerišu da primena sistema za optimizaciju profita zasnovanih na 
neuronskim mrežama može da dovede do značajnog povećanja profita, pri čemu radial basis 
funkcije daju rezultate bolje od višeslojnih perceptrona. Kvalitet preporuka koji sistem pruža zavisi 
od mogućnosti učenja regresionog modela na podacima iz svih oblasti prostora atributa. 
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