Vol.2, No 1, 1999 pp. 85-93
UDC 624.072.2:519.6(045)

MATHEMATICAL MODEL FOR THE EVALUATION
OF THIN - WALLED I GIRDERS FAILURE LOAD
UNDER PATCH LOADING
Duško Lučić
Faculty of Civil Engineering, University of Montenegro
Cetinjski put b.b., 81000 Podgorica, Montenegro, Yugoslavia

Abstract. For the last forty years many researchers have investigated the phenomenon of the carrying capacity loss of thin - walled I profiles under patch or concentrated load. To calculate failure load some 26 mathematical models have been proposed, mainly of empirical or semi-empirical nature.
This paper proposes a new mathematical model for calculating the load under which I profile loses its carrying capacity. The problem of load in the plane of the web panel has been analyzed. The problem itself has been set in a rather unusual way as a result of the experience gained through a complete experimental research.
The results were checked on a statistical sample gathered from 29 experimental researches. The proposed model corresponds well to the results of the experiments. Mathematical model is not final and a special effort should be made in order to improve it.
Key words: Civil Engineering, Steel Structures, Thin-walled Girders, Stability of Structures, Ultimate Load, Crippling, Patch loading

MATEMATIČKI MODEL ZA IZRAČUNAVANJE
GRANIČNOG OPTEREĆENJA TANKOZIDNIH I PROFILA
POD DEJSTVOM KONCENTRISANOG OPTEREĆENJA
U zadnjih 40 godina mnogi istraživači su ispitivali fenomen graničnog opterećenja I profila tankih zidova pod uticajem koncentrisanog opterećenja. Da bi se izračunalo opterećenje loma, predloženo je nekih 26 matematičkih modela, uglavnom empirijske ili poluempirijske prirode.
U radu se predlaže novi matematički model za izračunavanje opterećenja pod kojim I profil gubi svoju sposobnost nošenja. Analiziran je problem opterećenja na planu mrežnog panela. Sam problem je postavljen na prilično neuobičajen način, što je rezultat iskustva dobijenog tokom kompleksnog eksperimentalnog ispitivanja.
Rezultati su provereni na statističkom primerku sakupljenom iz 29 eksperimentalnih istra-živanja. Predloženi model odgovara rezultatima eksperimenta. Matematički model nije kona-čan i mora se uložiti poseban napor da bi se on poboljšao.