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Abstract. For the last forty years many researchers have investigated the phenomenon of
the carrying capacity loss of thin - walled I profiles under patch or concentrated load. To
calculate failure load some 26 mathematical models have been proposed, mainly of
empirical or semi-empirical nature.
This paper proposes a new mathematical model for calculating the load under which I
profile loses its carrying capacity. The problem of load in the plane of the web panel has
been analyzed. The problem itself has been set in a rather unusual way as a result of the
experience gained through a complete experimental research.
The results were checked on a statistical sample gathered from 29 experimental researches.
The proposed model corresponds well to the results of the experiments. Mathematical model
is not final and a special effort should be made in order to improve it.
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1. INTRODUCTION

This paper has presented an attempt of mathematical modeling of the problem of
carrying capacity loss and the phenomenon of local instability of thin-walled I girders
under concentrated or patch loading. The problem has been considered in terms of centric
loading i.e. in the plane of the web panel. What is understood by patch loading is the
locally distributed loading on the small area of the surface or the length of a certain
constructive element. What interests us most is the case when the upper flange is loaded
so that the web under loading is locally compressed. It is a very complex and challenging
problem, which was, and even today is, the subject of attention of many researchers. The
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problem of ultimate carrying capacity is particularly interesting - how it occurs, under
what circumstances, which parameters have crucial influence... Namely, it is a problem
with very emphasized elasto-plastic stresses and deformations, and also, geometric
nonlinearity is evident at initial loading increments.

The loss of carrying capacity is of local character and is reflected by the loss of girder
stability under the loading area (Fig. 1). The level of loading intensity may depend on
several factors. The thickness of the web has got the strongest influence on the carrying
capacity. This correlation is of approximate value to squared web thickness. Other
parameters - flange stiffness, relation of flange thickness to web thickness, width of load
distribution, space between vertical stiffeners, position of longitudinal stiffeners, initial
geometrical imperfections, affect the ultimate load but not as the web thickness does. It is
curious how the web slenderness affects the ultimate load only to some extent.

This problem has been largely present in the designing practice - main girders loaded
by the secondary elements (rails over the roof frames), purlins loaded by the reactions of
the secondary roof elements, purlin or girder loaded by the reactions of columns (Fig. 2),
unstiffened beam ends loaded by support reactions (Fig. 2), the column subject to the
compressed console flange, crane girders loaded indirectly (over the rails) by the crane
wheels, main bridge beams being erected by launching, boundary cross-bar over the
bearings in the case of bridge lifting (revision or repairs of supporting construction)...

Fig. 1. Characteristic collapse form Fig. 2. Purlin or girder loaded by column reactions

There is a large number of researchers who dealt with this problem, and as a result
during the last forty years there have been proposed some 26 different procedures of
calculating the failure load. Those suggested formulas or algorithms for calculation the
ultimate load are mostly of empirical or semiempirical nature. Basically, each calculating
procedure relies upon a large number of experimental researches and the quality of their
solutions is established by statistical laws. However, apart from this quality, it is essential
to make a calculating procedure as simple as possible for a possible use in the engineering
designing practice. This is so, because the final user of the results should be a structural
designer who should check the safety of the particular constructive element in a rather
simple and quick way. On the other hand, It is very difficult to meet these two conditions
at the same time. In the first case, there is a large number of parameters which can affect
the ultimate load to a lesser or greater extent, and their influence must be represented by
the failure load calculation, which leads to some rather complicated procedures of
calculating. I the second case, when the formulas are simple the empirical expressions
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often prove to be incomplete or inadequately defined.
Even though there is a large number of mathematical expressions and models, still

there is no universal procedure which would comprise all the parameters influencing the
failure load in a complete and abridged way, and at the same time describe the
phenomenon of the carrying capacity loss in an acceptable and realistic way.

After carrying out an experimental research [7] (March to October 1998) and gaining
some new knowledge about the stress-strain relations in girders, an idea occurred to
develop a new mathematical model which would describe, even more realistically, the
behaviour of girders until the final collapse and mathematically relate the stress-strain
relations at the moment of carrying capacity loss.

The experiences of other researchers are also used a lot, together the newly gained
ones [8]. The procedure is meant to initiate thinking about modeling the problem in such
a way which would be different from the already known ones.

2. CALCULATING PROCEDURE

2.1. Failure load

Failure load is a sum of two forces Pu1 and Pu2, with Pu1 being a force which forms the
collapse mechanism in the web, and Pu2 being an elastic force which is performed on
flange deformation at the moment of the carrying capacity loss.

21 uuu PPP += (1)

Because of the considerable geometrical and physical nonlinearity it is incorrect to
separate the influence of Pu1 and Pu2 forces and to apply a simple algebraic addition.
However we shall stick to this procedure because of its simplicity and the potential of
practical application.

2.2. Failure load Pu1

Force Pu1 forms a collapse mechanism in the web. This force is calculated by the
upper bound theorem of the theory of plasticity (kinematics theorem) and by the principle
of virtual work in the assumed collapse mechanism. The assumption is that this
mechanism is in fact a real mechanism. The calculated force is thus actually the lowest
failure load which is suggested by the theorem. The equalizing of the external load work
with the internal load work on the virtual mechanism deflections and rotations is
understood by this principle of virtual work.

2.2.1. The assumed mechanism of web collapse
Using the knowledge from the experiments [7] as well as those of other researchers [1-

5], the collapse in the web is represented by a mechanism as shown in Figure 3.
Girder collapse is affected by the two plastic lines formed in the web. The lines are

horizontal over the length of loading block. Lines are formed at mutual distance h. It is
assumed that at the moment of reaching the failure load, the plastic lines have been
formed up to length g. Plastification in the rest of yielding lines (shown in Fig. 3 by
broken lines) as well as formation of plastic hinges on the flange is considered to take
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place after reaching the ultimate load in the, so called, secondary mechanism. It is
obvious in Figure 3:

vhh +θ⋅= sin

h
vh −=θsin (2)

2.2.2. Stress distribution over the yielding lines
Stress distribution over the lower yielding line is assumed as shown in Figure 4.

Fig. 4. Stress distribution over the lower yielding line

Mp denotes the moment of full plasticity over the unit length. What is obvious in the
figure above is:
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with σw - denoting the web yielding stress, and tw - thickness of the web.

A dual stress distribution is assumed over the upper yielding line: over the length c the
distribution is as shown in Figure 5, while to the left and to the right of the length c stress
distribution is as over the lower yielding line (Fig. 4).

Mp1 denotes the moment of plasticity, and Fp1 the force of plasticity. In Figure 5 it is
obvious:
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Fig. 3. The assumed collapse mechanism
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Fig. 5. Stress distribution over the upper yielding line at length c.

2.2.3. The application of the virtual work principle
Pu1 force is obtained by the equalizing of Pu1 force work on the small virtual

movements - v with the work of the internal forces on movements and rotations over the
plastic lines of the mechanism. If the mechanism at the point of Pu1 force moves down for
a small virtual δv value, the relation between the virtual movements δv and virtual
rotation δθ can be presented in the following manner (Fig. 6):

Fig. 6. Movements of the mechanism for the small virtual value δv
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The equalizing of the external force work with the internal forces work on the small
virtual movement of the assumed mechanism results thus:

δθ⋅⋅+δθ⋅−⋅+δθ⋅⋅+δ⋅⋅=δ⋅ gMcgMcMvcFvP ppppu )(111 (7)

In relation (7), on the slope part of yielding lines (Fig. 3) integration is performed not
on its real length, but on its horizontal projections. The component of bending moment
rotating around vertical axis is neglected in the equation of the deformation work of the
internal forces. This simplification is introduced to render the expression (7) as simple as
possible. Taking into consideration the relation between vertical movements and rotations
(6) the expression for Pu1 is provided by the relation (7):
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2.3. Failure load Pu2

The results of the experimental research show that at the moment of collapse the
strains in the flange are in the elastic range. Only in the cases of the thickest web (with a
considerable flange deflection caused by web yielding), the yielding stresses are exceeded
at points around the loading block. However, even in these cases the complete
plastification (plastic hinge) is not expected to happen anywhere on the flange at the
moment of reaching the ultimate load. The stress diagram is similar to the beam on the
elastic foundations. By prolonging the deformation even after reaching ultimate load the
plastic hinges are formed at the points of maximum moments and they obviously belong
to the secondary mechanism.

The evaluation of the elastic force Pu2 needed for flange bending at the moment of
reaching the ultimate load will be calculated by the elastic theory of beam bending. Pu2
force is defined as a concentrated force which affects deflection v on the length l of
cantilever beam:
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where Ef - is flange elasticity module, and 
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flange (10)
By the results of the experimental research length l can be defined as the distance

between the two null moment points in the flange bending diagram. Deflection v of the
flange is obtained by extrapolation of the measured deflections in the increments close to
the collapse. These values may be defined for all girders by the results of the experimental
research. However in some cases these values are generally unknown and it is necessary
to define them in some empirical expressions.

2.4. The unknown values and the comparison with the actual failure load

Thus, failure load is calculated by the following expressions:

21 uuu PPP += , (1)

where the forces Pu1 and Pu2 are defined by the expressions:

θ⋅
−⋅

+
θ⋅

⋅
+⋅=

cos
)2(

cos
1

11 h
cgM

h
cM

cFP pp
pu (8)

32

48
l

vIE
P ff

u

⋅⋅⋅
= (9)

Values: moment of full plasticity Mp, moment of plastification Mp1, and the force of
plastification Fp1 are defined by the expressions (3-5). Angle θ used for defining the form
of buckle before the collapse (Fig. 3) can be calculated by the expression (2). In order to
complete the procedure of calculating the failure load it is necessary to define the
unknown values: h, f, g, v, and l which appeared in the previous expressions:
h − mutual distance between the upper and lower yielding line. Analyzing the results of
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the experiment it is fairly simple to define this value for all tested girders.
f − this value on the length c (the upper yielding line) defines the ratio between the

moments Mp1 and Mp, or the value used to define a part of plastification force Fp1. The
results of stress distribution over the upper yielding line can provide this value. To
evaluate the length f more precisely the increments before the collapse were analyzed
and the extrapolation was applied.

g − the length up to which full plastification developed over the yielding lines at the
moment of girder collapse. This is the only value which cannot be established by the
results of measuring. In the experiment the length g is expressed by the calculated
failure load which was approximated to the actual failure load. When defining the
empirical expression for the length g these values were taken to serve as a guide.

v − flange deflection at the moment before the girder collapse. Again by extrapolation it is
possible to establish these values.

l − span of the assumed cantilever beam for the evaluation of force Pu2. In the flange
bending moment diagram this span is assumed as a distance between the two null
moment points.
Yet, when establishing these unknown parameters, and the failure load itself, not all

the analyzed data are available. Also, in order to determine the ultimate load in advance,
which is the aim of this mathematical model, suitable expressions for all the unknown
values (h, f, g, v and l) should adopted so that the ultimate load can be determined by the
expression (1). The expressions for the unknown values should be arranged in that way
that on one side they represent the real values, and on the other side that the failure load
calculated in this way approximates the real failure load.

Taking into consideration the most relevant parameters which affect the required
lengths, these expressions were set after several attempts:
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wfw tfcItf ≤⋅⋅⋅= − ,25.1 25.010.095.0 (12)

bgccItg fw ≤≤⋅⋅⋅= ,89.7 05.035.005.0 (13)

10.035.015.011.0 −⋅⋅⋅= cItv fw (14)

blcItl fw ≤⋅⋅⋅= − ,40.4 15.035.045.0 (15)

The expressions are dimensionally dependent and are presented here in [mm]. In case
of using any other measure unit, it would be necessary to correct the numerical coefficient
at the beginning of each of these expressions.

Due to the load spreading through flange another condition is introduced:

ftc ⋅≤ 3 (16)

The quality of the results is checked on the statistical sample of 518 tested girders. For
each testing failure load Pu was determined following the suggested procedure here,
followed by the calculation of the relation xi = Pex / Pu. In the end there are mean vale xsr,
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standard deviation S and coefficient of variation V. Figure (7) shows the mutual relations
xi = Pex/Pu, for all analyzed testings with the mean vale xsr and coefficient of variation V.
The real indicator of the quality of the results is the coefficient of variation, because if the
calculated failure loads are normalized according to the mean value, the mean value will
be xsr = 1.0, and S = V = 21.40 %.

Fig. 7. Pex/Pu for analyzed tests

It was assumed for all girders that elasticity module of the material was E = 210 000
MPa (the real modules of elasticity were not used in order to make the solutions
comparable to the works of other researchers).

3. CONCLUSIONS AND GUIDELINES FOR FUTURE RESEARCHES

As obvious from all that has been said so far an attempt has been made to provide a
mathematical model of the problem of the carrying capacity loss of the thin-walled I
beams subject to patch loading in the plane of web panel. The problem has been stated in
an unusual way as a result of the experiences accumulated through the experimental
investigation

However, as it has been already mentioned the model is still incomplete and requires
further working on its improvement. The main directions of further activities will be to
modify the empirical expressions as much in form as in the essence of the assumption of
their meaning. Also, the procedure of calculating failure load should be simplified.

The aim is to develop a procedure which would precisely determine the value of
ultimate load, i.e. to have the mean value of certain relations x = Pex /Pu about one. What
this means is that the exact failure load value should be determined by the mathematical
model, and not to establish it by normalizing the model with the men value.

It is also planned to develop a model for calculating the ultimate load in cases when
the load is not in the plane of the web panel. This is a particularly significant problem
which has not been thoroughly studied so far when considering the number of cases
present in practice (the rails of crane girders are generally eccentric in relation to the
plane of web panel, and the similar case is erecting bridges by launching...)
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MATEMATIČKI MODEL ZA IZRAČUNAVANJE
GRANIČNOG OPTEREĆENJA TANKOZIDNIH I PROFILA

POD DEJSTVOM KONCENTRISANOG OPTEREĆENJA

Duško Lučić

U zadnjih 40 godina mnogi istraživači su ispitivali fenomen graničnog opterećenja I profila
tankih zidova pod uticajem koncentrisanog opterećenja. Da bi se izračunalo opterećenje loma,
predloženo je nekih 26 matematičkih modela, uglavnom empirijske ili poluempirijske prirode.

U radu se predlaže novi matematički model za izračunavanje opterećenja pod kojim I profil
gubi svoju sposobnost nošenja. Analiziran je problem opterećenja na planu mrežnog panela. Sam
problem je postavljen na prilično neuobičajen način, što je rezultat iskustva dobijenog tokom
kompleksnog eksperimentalnog ispitivanja.

Rezultati su provereni na statističkom primerku sakupljenom iz 29 eksperimentalnih istra-
živanja. Predloženi model odgovara rezultatima eksperimenta. Matematički model nije konačan i
mora se uložiti poseban napor da bi se on poboljšao.


