Vol.2, No 1, 1999
pp. 1-5
UDC 514.752.4(045)
THE 3RD DEGREE RECTILINEAR SURFACES
IN QUADRIC TUFTS
Miroslav Marković
Faculty of Civil Engineering, Beogradska 14,
18000 Niš, Yugoslavia
Abstract. It is a known fact that the 2nd
degree surfaces, regardless of their reality, induce the identical involutory
series in the generatrices of a 3rd degree rectilinear surface whose 4th
degree piercing curve of a 1st kind of the given surfaces are its double
points. It is also known that two 2nd degree surfaces, regardless of their
reality, determine a tuft of 2nd degree surface. The paper researches the
3rd degree rectilinear surfaces in the tufts of the quadrics, having in
mind all the kinds of tufts, as well as the possibility of constructive
determination of the generatrices of those surfaces. It is demonstrated
that the number of those surfaces depends on the type of the tufts of the
quadric as well as of the reality of the apexes and the faces of the common
autopolar tetrahedron.
Key words: Rectilinear surface, the tufts
of the quadrics, autopolar tetrahedron
PRAVOIZVODNE POVRŠI 3. STEPENA
U PRAMENOVIMA KVADRIKA
Poznato je da dve površi 2.stepena, bez obzira na
svoj realitet, na izvodnicama jedne pravoizvodne površi 3.stepena induciraju
identične involutorne nizove, čije su dvostruke tačke prodorna kriva 4.reda
I.vrste datih površi. Isto tako je poznato da dve površi 2.stepena, bez
obzira na svoj realitet, odreduju jedan pramen površi 2.stepena. U radu
su izvršena istraživanja pravoizvodnih površi 3.stepena u pramenovima kvadrika,
imajući u vidu sve vrste pramenova, kao i mogućnosti konstruktivnog odredjivanja
izvodnica tih površi. Pokazano je da broj takvih površi zavisi od tipa
pramenova kvadrika, kao i od realiteta temena i stranica zajedničkog autopolarnog
tetraedra.