Vol.3, No 2, 2005 pp. 235 - 242
UDC 514.752.2:681.3.06(045)=20
THE PLANE SECTION OF THE SURFACE OF REVOLUTION
Ratko Obradović
University of Novi Sad, Faculty of Technical Sciences, 21121 Novi Sad,
Serbia and Montenegro

Abstract. In this paper a procedure for determining a plane section of the surface of revolution was described. The surface of revolution is given by an axis of the revolution and a meridian which is coplanar with the axis. The axis of revolution is parallel to the z axis of the coordinate system. The intersecting plane is given by its three points; these are the points where the plane intersects axes x, y and z. For the determination of a plane section of the surface of revolution we can use horizontal planes which intersect the surface of revolution on parallel circles and each auxiliary plane intersects the intersecting plane on the horizontal line. Two points of the intersecting space curve are given as intersecting points between the horizontal line and the circle and new points of the intersecting curve have been determined by using several auxiliary planes.
Key words: the Surface of Revolution, the Plane Section, Computer Geometry

RAVAN PRESEK ROTACIONE POVRŠI
U ovom radu je opisana procedura za određivanje ravnog preseka rotacione površi pomoću računara. Površ je zadata sa meridijanom i osom površi koji se nalaze u frontalnici, a osa površi je paralelna sa z osom koordinatnog sistema. Ravan ? koja seče površ je zadata sa svoja tri osna traga. Za određivanje ravnog preseka rotacione površi korišćene su horizontalne pomoćne ravni koje rotacionu površ seku po paralelama, a svaka pomoćna ravan seče ravan ? po horizontali. U preseku ove horizontale sa paralelom povši za istu pomoćnu ravan dobijaju se dve tačke prostorne presečne krive, dok se cela kriva dobija kao skup parova tačaka za sve pomoćne ravni.