Vol.2, No 3, 2001 pp. 185-191
UDC 626.85 (045)

ESTIMATION OF FAO PENMAN C FACTOR
BY RBF NETWORKS
Slaviša Trajković1, Branimir Todorović2, Miomir Stanković2
1Faculty of Civil Engineering and Architecture, University of Niš,
Aleksandra Medvedeva 14, 18000 Niš, Serbia and Montenegro,
E-mail: slavisa@mail.gaf.ni.ac.yu
2Faculty of Occupational Safety, University of Niš, Čarnojevića 10a, 18000 Niš

Abstract. An accurate estimation of the c factor is necessary in order to improve the validity of evapotranspiration estimation by the FAO (United Nations Food and Agriculture Organization) Penman method. The calculation of the c factor using the table interpolation or regression expressions can lead to a considerable error that is directly transferred to the estimated evapotranspiration. This paper reviews the application of RBF (Radial Basis Function) networks to estimate the FAO Penman c factor. The values of the c factors obtained by RBF networks were compared to the appropriate c values produced using regression expressions. It was shown that the RBF networks ensure a better agreement with table c values, thus improving the accuracy of the estimation of reference crop evapotranspiration. At the end of the paper, an example that demonstrates the simplicity of the use of RBF networks and the accuracy of the c factor estimation is presented.
Key words: Evapotranspiration, FAO-24 Penman, Artificial Neural Networks.

ESTIMACIJA FAO-24 PENMAN C FAKTORA
PRIMENOM RBF MREŽA
U ovom radu je prikazana estimacija FAO-24 Penman c faktora primenom RBF mreža. Vrednosti c faktora dobijene RBF mrežom su uporedjivane sa odgovarajućim vrednostima iz regresionih jednačina. Pokazano je da RBF mreža obezbedjuje bolje slaganje sa tabelarnim FAO-24 Penman c faktorima u poredjenju sa regresionim jednačinama. Na kraju rada je kroz praktičan primer pokazana sva jednostavnost korišćenja RBF mreže kao i pouzdanost proračuna FAO-24 c faktora.
Ključne reči: Evapotranspiracija, FAO-24 Penman, Veštačke neuronske mreže.