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Abstract. An accurate estimation of the ¢ factor is necessary in order to improve the
validity of evapotranspiration estimation by the FAO (United Nations Food and
Agriculture Organization) Penman method. The calculation of the c factor using the
table interpolation or regression expressions can lead to a considerable error that is
directly transferred to the estimated evapotranspiration. This paper reviews the
application of RBF' (Radial Basis Function) networks to estimate the FAO Penman c
factor. The values of the c factors obtained by RBF networks were compared to the
appropriate ¢ values produced using regression expressions. It was shown that the
RBF networks ensure a better agreement with table ¢ values, thus improving the
accuracy of the estimation of reference crop evapotranspiration. At the end of the
paper, an example that demonstrates the simplicity of the use of RBF networks and the
accuracy of the c factor estimation is presented.
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1. INTRODUCTION

The Penman method is used worldwide in evapotranspiration estimation. A frequently
used version is (Doorenbos and Pruitt 1977):

ETy = c[WR,, +(1=W)0.27(1 +0.01U (e, —ey)] M)

where ET, = reference crop evapotranspiration (mm/d); ¢ = adjustment factor; W = psy-
chrometric weighting function; R, = net radiation (mm/d); U, = mean wind speed at 2 m
(km/d); e, = saturation vapor pressure (millibars); and e, = actual vapor pressure (milli-
bars).
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Tabular values of the ¢ factor are given in Appendix II of Doorenbos and Pruitt
(1977). The c factor is shown as a function of daily global solar radiation, Ry; maximum
daily relative humidity, RH,,,, ; mean daytime wind speed, U, ; and the ratio of daytime to
nighttime wind speeds U,/ U,.

The psychrometric weighting function is the weighting factor for the effect of radia-
tion on reference crop evapotranspiration. A table defining W is provided in Table 4 of
Doorenbos and Pruitt's paper. Net radiation R, is the difference between all incoming and
outgoing radiation and estimated as a function of the extraterrestrial radiation, R, and the
maximum sunshine hours, N. Parameters R, and N can be obtained from tables for spe-
cific latitude and months (Doorenbos and Pruitt, 1977); or it may be calculated using
equations (Allen et al., 1989), (Jensen et al., 1990). Values of saturation vapor pressure e,
can be determined from Table 5 of Doorenbos and Pruitt's paper.

The values of parameters W, R,, N and e, can be easily obtained by table interpolation.
Most often, only one interpolation is needed to obtain the accurate values of the appropri-
ate parameter. The value of the ¢ factor can also be obtained using table interpolation.
However, it is necessary to make 15 interpolations in order to obtain that value, which
requires the introduction of 45 different numbers into the calculation. Using this way of
calculation with 15 interpolations, can lead to the possibility of making an error. Besides
that, more time is needed to obtain ¢ value (a few minutes).

The second approach that is used for estimating ¢ values requires the use of regression
expressions first introduced by Frevert et al. (1983) and later improved by Allen and Pru-
itt (1991). In spite of the improvements, the number of ¢ factors with an error bigger than
4% is still a large one. It shows that it is necessary to develop a new approach of estimat-
ing the values of ¢ factors. The aim of this paper is to develop new approach based on the
RBF networks that would be simple to use, because it wouldn't demand from a user any
background knowledge of Artificial Neural Networks (ANNS).

2. RBF NETWORKS

Artificial neural networks, as universal function approximators, are widely used for a
variety of applications such as pattern recognition, control, identification and prediction
of nonlinear dynamical systems. Most commonly applied learning algorithm is back
propagation (Mason and Wang, 1990), and usually this algorithm is blamed for slow con-
vergence speed, making it difficult to put applications to practice. However, the radial
basis function network (RBF) proposed by Powell has a very fast convergence property,
compared to multilayer perceptron (Moody and Darken, 1988), (Park and Sandberg,
1991). An arbitrary function can be approximated by the linear combination of locally
tuned factorable basis functions. The property of locality is the main reason, why the RBF
network can be learned much faster than the multy-layered perceptron. More detailed
explanations about the RBF network architecture and network operation can be found in
Fernando and Jayawardena (1998).

The RBF network has the input layer with N/ nodes, the hidden layer with N nodes
and output layer with N’ nodes. The internal units form a single layer of N receptive
fields that can give the localized response function in the input space (Figure 1).
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Input layer Hidden layer ~ Output layer

Fig. 1. A RBF network. Unit response functions are depicted graphically

The overall response function of the RBF network is:

O =9GN = AEE )
FA =M bl 3)

70N =[x xS LGN 4)

g =[G, g2 G" M) gpr G (5)

where ¥ is a real-valued vector in the input space; X OA is a vector of output neurons
activities; g is a vector of response functions of the i-th receptive field and A =[aqy;],
k=1,..n%i=1,.,n" are the output coefficients.

Several functions can be used as g; (J?[ ’A), and in this paper is used Gaussian type ra-
dial basis function, which is given by:

A Bt =m,
i
gi(x"")=e (6)

where m; and 0y, are the center and the width of radial basis function g; for j-th input.
Task that the learning algorithm should perform can be formulated as follows. Given

A input/output data and the specified model error € > 0, obtain the optimal solution for

network parameters ay;, my, Oy, k= 1,...,n0, i=1,., n j=1.., n', which satisfies the

inequality:
18 _on_ -2
EE:E}\ZIHX X Tt e (7)

Parameter tuning process is based on the gradients 0E/day;, OE/Om;, OE/00;, k=

. H . I . .
l,.n%i=1,.,n ,j=1,...,n, derivation:
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For parameter tuning appropriate gradient methods can be used such as the steepest
descent method, "momentum" method, conjugate gradient method, and quasi-Newton
method.

Tuning of parameter p using gradient method with fixes step size is defined by the
following iterative process:

p(n+1) = p(n)+Ap(n) (15)
_ _0E(n)
Ap(n) =- 16
\p(n) =-N op() (16)

An enhanced version of back propagation uses momentum term and flat regions elimi-
nation. The momentum term introduces the old parameter change as a parameter for the
computation of the new weight change. The momentum term is used in this paper.

This avoids the oscillation problems common with the regular back propagation algo-
rithm when the error surface has a very narrow minimum area. The new parameter update
is computed by:

0E(n)
ap(n) +alp(n) a7

where O is the momentum, specifying the influence of the previous parameter change, and
N is the learning step.

Ap(n+1) =-n
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The effect of the momentum is that flat regions of the error surface are traversed rela-
tively rapidly with a few big steps, while the step size is decreased, as the surface gets
rougher. This adaptation of the step size increase learning speed significantly.

3. ESTIMATION OF FACTOR C

The RBF networks used for estimation of the factor ¢ have the following structure.
There are four neurons in the input layer. Their number is defined by the fact that the val-
ues of the ¢ factor depend on four variables (RH,,;,, R,, Uy, and U, /U,). The number of
neurons in the hidden layer varies from 6 to 60. There is one neuron in the output layer of
the RBF networks.

Samples (192 tabular values of factor ¢) are divided in to two groups. For the RBF
network training, 168 randomly chosen training samples (no underlined values in Table 1)
were used. All samples (192 tabular values of the ¢ factor) are used for verification of
RBF networks, obtained in a stage of training. Thus, the ¢ values produced by RBF net-
works can be compared to the regression estimates and table values. Twenty-four table ¢
values found in the verifying set only were used for controlling the ability of the networks
to generalize the knowledge obtained during the training stage.

Table 1. FAO Penman ¢ factor (Doorenbos and Pruitt 1977)

SOLAR RADIATION (mm/d)
Uy RH,.x = 30% RH,.x= 60% RH,.x = 90%

(m/s) 3 6 9 12 3 6 9 12 3 6 9 12
D1 BHISH]OG O] ]G 1dy)dn | d2|ds
@ UyU, =4
0 0.86 [ 0.90 | 1.00 [ 1.00 | 0.96 [ 0.98 | 1.05 | 1.05 | 1.02 | 1.06 | 1.10 | 1.10
3 0.79 [ 0.84 1 092 [ 097 | 0.92 | 1.00 | 1.11 | 1.19 [ 0.99 | 1.10 | 1.27 | 1.32
6 068 [ 0.77 1 0.87 [ 093 1 0.85 | 096 | 1.11 | 1.19 [ 0.94 | 1.10 | 1.26 | 1.33
9 0.55]0.65)078 [090]0.76 | 0.88 | 1.02 | 1.14 [ 0.88 | 1.01 | 1.16 | 1.27
() UgU, =3
0 0.86 [ 0.90 | 1.00 [ 1.00 | 0.96 | 0.98 | 1.05 | 1.05 | 1.02 | 1.06 | 1.1 1.10
3 0.76 | 0.81 | 0.88 [ 0.94 | 0.87 | 0.96 | 1.06 | 1.12 [ 0.94 | 1.04 | 1.18 | 1.28
6 0.61 | 0.68 | 0.81 | 0.88 [ 0.77 | 0.88 [ 1.02 | 1.10 [ 0.86 | 1.01 | 1.15 | 1.22
9 046 | 0.56 1 0.72 [ 0.82 1 0.67 | 0.79 | 0.88 | 1.05 [ 0.78 | 0.92 | 1.06 | 1.18
(© UgU, =2
0 0.86 1 090 [ 1.00 | 1.00 [ 0.96 | 098 [ 1.05 | 1.05 [ 1.02 | 1.06 | 1.10 | 1.10
3 0.69 | 0.76 | 0.85 |1 092 [ 0.83 | 091 [ 0.99 | 1.05 | 0.89 | 0.98 | 1.10 | 1.14
6 0.53 1061 074|084 |0.70 1080 094|102 (0791092 | 1.05] 1.12
9 0371048 | 0.65 ] 0.76 | 0.59 1 0.70 | 0.84 | 0.95 [ 0.71 | 0.81 | 0.96 | 1.06
@ UgU, = 1
0 0.86 1 090 [ 1.00 | 1.00 | 096 | 0.98 | 1.05 [ 1.05 | 1.02 | 1.06 | 1.10 | 1.10
3 0.64 |1 071 [ 0.82 ] 0.89 [ 0.78 | 0.86 | 0.94 | 0.99 | 0.85 | 0.92 | 1.01 [ 1.05
6 043 10531068 ] 079 |0.62]070 (084093 (0.72]0.82(0.95] 1.00
9 027 1041 | 0.591]0.70 [ 0.50 | 0.60 [ 0.75 ] 0.87 [ 0.62 | 0.72 | 0.87 | 0.96

A network with ten neurons in the hidden layer, which gave the minimum error at the
verifying stage, was chosen for use in the PROBA computer program. Table 2 shows the
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comparison of the ¢ values produced by RBF networks or regression expressions with 192
tabular ¢ values. In this table MARE denotes mean absolute relative error; MAXPRE the
maximum positive relative error; MAXNRE the maximum negative relative error; NE the
number of test samples with an error greater than 4% (NE>4%); DEV is the standard de-
viation of absolute relative error and r* is the coefficient of determination.

Table 2. Comparison of various methods used to calculate ¢ factor

Model MARE | MAXPRE [ MAXNRE | NE>4% | DEV r?
(%0) (%) (%0) (%)
€3] @) (€) “) () (©) (@)
Frevert et al. (1983) 3.686 | 26.16 13.04 58 3.744 | 0.955
Allen and Pruitt (1991)| 2.927 32.41 13.26 36 3.981 | 0.979
RBF network 0.541 2.84 2.94 0 0.523 | 0.999

The mean absolute relative error of the RBF network is 0.54%, while the correspond-
ing error of the regression expressions is 2.93% (Allen and Pruitt 1991), and 3.69%
(Frevert et al. 1983). The RBF network has maximum error less than 3%, while in the
regression expressions it is over 32%, and 26%, respectively. The number of samples with
error greater than 4% in the regression models is 36, and 58 respectively, while in the
RBF networks there is not a factor with such a large error.

4. APPLICATION

The following section includes examples for applying a new approach for factors es-
timation. The example data set is for average climatological variables at Beograd, Serbia
and Montenegro during April, July and September from 1971 to 1975. The use of a
trained RBF network is very simple and does not require any knowledge of ANN. This
was achieved using the PROBA computer program, which requires a trained RBF net-
work and a file with the input data (RH,,;», R, Uy, and U, / U,). The agreement between
the ¢ values produced by trained RBF network and the table interpolation is great. Using
the RBF network for the April, where variables RH = 72.4%, R, = 6.34 mm/d, U, = 3.14
m/s and U,/ U, = 1.13, c is equal to 0.886. The interpolated ¢ value from Table 1 for the
same data is 0.896 (difference of 1.1%). Applying the RBF network for the July, where
variables RH =76.4 %, R;=8.74 mm/d, U,=2.22 m/s and U,/ U,=1.22, c is equal to
0.991. The interpolated ¢ value from Table 1 for the same data is 1.009 (difference of
1.7%). Using the RBF network for the September, where variables RH = 84.2%,
R,=5.68 mm/d, U;=2.34 m/s and U,/ U, = 1.05, c is equal to 0.934. The interpolated ¢
value from Table 1 for the same data is 0.931 (difference of 0.3%). RBF networks in
comparison with table interpolation obtain the ¢ values twenty times faster. The copy of
PROBA computer program with a trained RBF network can be obtained from the first
author.
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5. CONCLUSIONS

The validity of evapotranspiration calculation by the FAO Penman method is in-
creased with the accurate estimation of ¢ factors. The determining of ¢ values by table
interpolation should be avoided because of its long procedure that can lead to a high er-
ror, which is directly transferred to the estimated evapotranspiration (see the expression
(1)). The application of the regression expressions, in spite of the improvements done by
Allen and Pruitt, does not always give satisfactory results. The comparative analysis
showed that the RBF networks guarantees a more accurate estimation of ¢ factors when
compared to regression expressions. The use of the PROBA computer program with a
trained RBF network is very simple and does not require any knowledge of ANNs.
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ESTIMACIJA FAO-24 PENMAN C FAKTORA
PRIMENOM RBF MREZA

SlaviSa Trajkovi¢, Branimir Todorovi¢, Miomir Stankovié¢

U ovom radu je prikazana estimacija FAO-24 Penman c faktora primenom RBF mreza.
Vrednosti ¢ faktora dobijene RBF mrezom su uporedjivane sa odgovarajuc¢im vrednostima iz
regresionih jednacina. Pokazano je da RBF mreza obezbedjuje bolje slaganje sa tabelarnim FAO-
24 Penman c faktorima u poredjenju sa regresionim jednacinama. Na kraju rada je kroz praktican
primer pokazana sva jednostavnost koris¢enja RBF mrezZe kao i pouzdanost proracuna FAO-24 ¢
faktora.

Kljucne reci: Evapotranspiracija, FAO-24 Penman, Vestacke neuronske mreze



