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Abstract. Single degree of freedom system, which is described with the Duffing
differential equation, with rigid arrester was studied on the basis of the non-linear
systems theory and stereo-mechanical impact theory. The impact vibrations in Duffing
oscillator subjected to harmonics excitation in the case of the unilateral rigid arrester
and in the case of the symmetrical bilateral arrester were determined numerically by
approximate method Runge - Kutta of the fourth order. Turbo pascal programs were
composed and the computer graphics was used. The qualitative analyses of the global
dynamic stability of the non-linear impact systems having unilateral or symmetrical
bilateral arrester was carried out on the basis of phase portraits and of two-
dimensional mapping.
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1. INTRODUCTION

Vibroimpact motion is used in many machines for carrying out work processes. Some
typical machines in which the vibroimpact regime forms the basis of work processes are
hammers, presses, rammers, stampers, etc. For the vibroimpact machines’ work processes
it is important to achieve regulated periodic motion, that is, stationary periodic
vibroimpact regimes. The transition motion regimes occur from the moment a machine is
switched on to the moment of establishing a stationary regime; it is what makes their
examination worth while. The dynamic model used for describing these machines is an
oscillator with the rigid fixed unilateral arrester. Of the same interest is the study of the
dynamic oscillator model that has an impact upon the rigid fixed bilateral arrester used for
modeling vibroimpact models characteristic for moveable mechanisms such as joints,
kinetic couples and other transmission connectors in which clearances appear.
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The vibroimpact processes in dynamic systems described by the linear differential
equations with adjoined impact conditions, according to the stereomechanical theory of
impact, have been studied by "accurate" analytical method (adjustment method) [1, 2, 5],
by approximate analytical methods (method of equivalent linearization, by transformation
of variables, etc.) [1,13]. The application of the analytical methods is very complex and
restricted in view of the fact that the solutions are of transcendent type, that is, they
cannot be found in a closed form since the oscillatory motions are interrupted by impacts.
The modern methods for solving these problems are based upon the application of
computer graphics’ numerical methods with geometrical data interpretation [9,10,11,12].
The referential literature shows that the vibroimpact systems in which oscillatory motions
are described by the linear differential equations and the impact conditions adjoined to
them according to the stereomechanical theory of impact have been studied.

The problem of a non-linear oscillator, described by the Duffing differential equation,
excited by the periodic force, in the case of unilateral and bilateral symmetrical rigid
arrester has been discussed in this paper together with inclusion of respective impact
conditions according to the stereomechanical impact theory of impact. The differential
equations’ system is written in the form of autonomous differential equations’ system
depending on dimensionless parameters. By means of the Runge-Kutt approximate
method the phase portraits are obtained by means of the computer graphics in the Turbo-
Pascal; they serve as the basis from which it is possible to examine dynamic behavior of
the described vibroimpact systems.

2. DYNAMIC MODELS

This paper deals with the Duffing oscillator that consists of oscillatory mass m, a
spring of non-linear elasticity force F, = —(kz + nz’) and a damper of the attenuating force
Fp=—cZ', where z' = dz/dt (1- time). The oscillatory mass is acted upon by the periodic
force F cos(V1). In the first case, mass of the non-linear oscillator strikes upon a rigid
fixed unilateral arrester placed at distance z, from its equilibrium position - the dynamic
model is represented in Fig. la, while in the second case (b), in Fig. 1b, mass of the non-
linear oscillator strikes upon a rigid fixed bilateral arrester placed symmetrically with
respect to the equilibrium position of the oscillatory mass at distance +z.

kz+nz’ Fcos(vT) kz+nz’ Fcos(vt)
-+ -+
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The differential equation of the Duffing oscillator motion is of the form:

mz" = Fy + F, + F cos(VT) €))

that is,

3 —¢z' + F cos(VT) ©)]

mz" =—kz—nz
For the permissible regions of motion, in the case (a) z <z, and in the case (b) |z| < z,
2" =d’z/dt* (T - time). In position z =2z, (case a) and |z| = z, (case b) there is an impact
upon the rigid fixed arrester causing a momentous change of intensity and of the direction
of velocity z' of moveable mass m of the non-linear oscillator. In accordance with the
stereomechanical theory of impact - with some approximation - it can be taken that the
value of the velocity immediately after the impact is related to the value of the velocity
immediately before the impact - which is momentous - by the following relation:

Z(tT)=-Rz'(17)

casea:z(1)=z(17) =z, 3)

caseb:| z(TH)|=]z(17) | = z,

(T"-1)-0

where T' is time immediately after the impact and T~ is time immediately before the
impact.

Introducing dimensionless parameters x =z/z,, t= WL, where o =k/m, from
differential equation (2) the dimensionless differential equation is obtained of the
following form:

¥ ==&k —x -y’ + [ cos(Qr) C))
where
2 F v OO d
6:;, :ﬂ’ =) Q=—, = 5
(km)""? ==/ kz, w E% dt )

Impact condition (3) related to the momentous change of the oscillatory mass velocity
due to the impact against the rigid fixed arrester, after introducing dimensionless
parameters is transformed into the form:

x'(t+) =-Rx'(t")
casea:x(t ) =x(t7) =1
caseb:| x(t")|=|x(t7)|=1
" =t)-0

(6)

where is R U [0,1] the coefficient of restitution (establishing) velocity. In differential
equations (4) and (6) differentiation is done with respect to dimensionless time .

Non-linear differential equation (4) can be written in the form of autonomous
differential equations of the first order where (x, y, f) are coordinates of three-dimensional
space RZXI:
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X=y
§==8y—x -y + f cos(Qr) (7
i=1

Corresponding impact conditions (6) can be written in concise form:

(x,y,t) » (x,~Ry,t) za x=1,
case (a) x=1 ®)
case (b) |x|=1

3. PHASE PORTRAITS

Duffing oscillator defined by a system of differential equation (7) with no damping
and with no external excitation force has one stationary point (x,y) =(0,0) as a stable
center in the case of a strong spring (Y > 0). In the case of a mild spring (y < 0) there are
three stationary points, namely, a stable center at (x,y) = (0,0) and two unstable saddles
(x,y) = (1 /y{*2,0). In the case of the strong spring, the oscillatory processes are taking

0=0;y=0.1;R=1 0=0;y=-4.0;R=1
Fig. 2.
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place with respect to the stationary periodic phase trajectories whose position depends on
the choice of initial values (Fig.2a). For the case of the mild spring depending on the
choice of initial values either a stationary periodic oscillating regime with respect to parts
of the closed curves or a non-stationary one with respect to unstable branches, separators
or open branches (Fig. 2b) can occur.

The impact influence on the basic oscillatory system causes a change of the phase
portrait in the sense of cutting off parts of the phase trajectories that are outside the
permissible region of motion as illustrated in Fig. 2¢c-f for the case of an ideally elastic
impact when R = 1. In the case of damping (0), the stationary points’ coordinates do not
change while the phase trajectories deform into spirals due to energy dissipation (Fig. 3a
and b). The corresponding phase portraits for the adjoined impact conditions for the cases
(a) and (b) are shown in Fig. 3c-f.
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0=0.2;y=0.1;R=1 0=02;y=-4.0;R=1
Fig. 3.

If the Duffing oscillator is acted upon by the periodic excitation force the response is
of periodic, subharmonic or chaotic type depending on the system parameters (Y,0),
amplitude and frequency of the compulsive force as well as the initial values of
displacement and velocity of the oscillatory mass. Global behavior of the vibroimpact
systems of the arresters’ types (a) and (b) is observed on the basis of the phase portraits.
The phase portraits, described in Fig. 4a and b, for the cases of unilateral and bilateral
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arresters, are obtained by solving a system of differential equations (7) along with
inclusion of the corresponding impact conditions (8), the Runge-Kuta numerical method
of the forth order according to the Turbo-Pascall program by means of the computer
graphics. The phase portraits in Fig. 4 correspond to chaotic regimes followed by the
phenomena of "pasting" and "scratching" impacts.

0=0;y=0.1;/=2.0; R=0.7
Fig. 4.

4. TWO-DIMENSIONAL DOTTED MAPPING

The vibroimpact oscillators belong to the group of discrete dynamic models.
Information about the vibroimpact oscillators’ behavior is obtained in the projected phase
plane by the numerical simulation in the form of phase trajectories. The time evolution of
the impact occurrence described by the phase trajectories, that is, phase portraits for
varied initial velocities gives an idea about the transition regimes that take the form of
strange attractors in the case of stochastic response. It is usually important to examine
asymptotic behavior of the phase trajectories as well as existence of stationary motion; in
relation to this, it is also necessary to give an answer to the question about "where do the
phase trajectories end?" The places where they end are called asymptotic restricted sets
"attractors." The attractors’ geometrical structure can be simple (a fixed equilibrium point
for dissipative systems without excitation forces, the boundary circle corresponding to
periodic motion) or very complex for the cases of chaotic motion that is neither
equilibrium nor periodic. The attractors of complex geometric structure as qualitative
indicators of the process stochacity are called strange attractors. The basic characteristic
of strange attractors is their sensitivity to the initial conditions. In Poincare section the
boundary circle generates only one point whereas chaotic motion generates a great
number of points filling up the section place with no rule. If assumed that f: X - X is a
discrete dynamic system of the differential flow X in the section chosen in the arrester’s
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plane due to the very nature of the process, the answer to the above question ("where do
the phase trajectories end?") can be more precisely formulated on the basis of
accumulating the flow X points in the impact section. In that sense mapping is done in the
chosen impact section for a very long iterative procedure; thus the information about the
vibroimpact oscillator behavior is completed.

For the observed vibroimpact systems (cases a and b), the two-dimensional mapping
has been done for varied values of the initial velocities while, at the same time, the
sections are separated of the phase attractors in the rectilinear coordinate systems in
which the abscissa represents the phase ¢ =¢ mod(21/Q), while the ordinate gives
velocity v immediately after the oscillator mass impact against the arrester’s right side.
Figs. 5a and b give sections of strange attractors for the vibroimpact systems in the cases
(a) and (b) of the arrester for the same values of the parameters, amplitude and
compulsion force phase as well as the initial values. This example provides for observing
the chaotic regime of oscillation with very similar point’s distribution in corresponding
sections of the strange attractors.
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3=0.1;y=0.1;/=1.0; R=0.5
Q=0.8; x)=1.0; Vo =1.0 + 0.2k; k= 1,2,...,10

Fig. 5.

5. CONCLUSION

This paper presents a procedure for global dynamics of the Duffing oscillator’s
vibroimpact process, with unilateral and bilateral symmetrical rigid arrester as well as
with periodic excitation force. The created programs provide for efficient drawing of
phase portraits and phase attractors’ sections upon which dynamic behavior of the
described virboimpact systems with given parameters can be observed. The examination
of the vibroimpact dynamics for varied parameters’ values requires inclusion of the
modern bifurcation theory that would surely be of interest for further research.
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Noawv ks

DINAMIKA DUFFING-OVOG OSCILATORA SA UDARIMA
Slavka Mitié

Oscilatorni sistem sa jednim stepenom slobode, opisan Duffing-ovom diferencijalnom
Jjednacinom, sa krutim ogranicivacem, izucavan je na osnovu nelinearne teorije i stereomehanicke
teorije udara. Udarne oscilacije Duffing-ovog oscilatora, sa harmonijskom pobudom, u slucaju
jednostranog krutog ogranicivaca i u slucaju simetricnog dvostranog krutog ogranicivaca,
odredjene su numericki pomocu metode Runge-Kutta Cetvrtog reda. Sastavljeni su odgovarajuci
Turbo-pascal programi i koviséena je kompjuterska grafika. Kvalitativna analiza globalne
dinamicke stabilnosti nelinearnih udarnih sistema sa jednostranim ili sa simetricnim dvostranim
ogranicivacem sprovedena na osnovu faznih portreta i dvodimenzionih mapa.



