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Abstract. Extreme events like fire can cause massive damage to indoor areas and life 
threatening conditions. Early residential fire detection is important for life preservation, 
prompt extinguishing and reducing damage. To detect fire, one or a combination of sensors 
(heat detectors, smoke detectors, flame detectors) and a detection algorithm are needed. The 
sensors might be a part of a wireless sensor network (WSN) or work independently. One of 
the most frequently used heat detectors is the rate-of-rise heat detector. In this paper some of 
the data mining algorithms on simulation data of the rate-of-rise heat detector are applied. 
Data mining seems to be an effective technique for discovering useful knowledge from a 
large amount of data observed by many sensors.  Prediction in sensor networks can be 
performed in the way that each sensor learns a local predictive model for the global target 
classes, using only its local input data. Only the predicted target class for each reading is 
then transmitted to the gateway or to the base station. One important class of such 
algorithms are predictors, which use the sensor inputs to predict some output function of 
interest. The purpose of the paper is to analyze different classification algorithms in the case 
of rate-of-rise heat detector to see which of the applied techniques led to higher accuracy 
and fewer errors. 
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1. INTRODUCTION  

Extreme events such as fire can cause massive damage to indoor areas and life threat-

ening conditions. Early residential fire detection is important for prompt extinguishing 

and reducing damages and loss of life. To detect fire, one or a combination of sensors and 

a detection algorithm are needed. The sensors might be part of a wireless sensor network 

(WSN) or work independently [1]. The temperature sensors are probably the simplest and 

the most obvious sensors for fire detection. Heat detectors generally fall into two catego-

ries - fixed temperature heat detectors and more commonly, rate-of-rise heat detectors. A 
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fixed temperature heat detector utilizes a temperature sensing element which generates an 

alarm condition if the temperature within the protected area reaches a predetermined level 

(e.g. 60ºC or 90ºC). A fixed temperature trigger point should be selected which is most 

suitable for the situation in question. These detectors are used where high ambient tem-

peratures exist or where sudden changes in temperature can occur e.g. kitchens, boiler 

rooms & foundries etc. A rate-of-rise heat detector includes a fixed temperature element 

as the ones mentioned above but in addition includes a temperature sensing element 

which can detect a sudden change in temperature. This is a device that responds when the 

temperature rises at a rate exceeding a predetermined value (e.g. 8.33 ºC/min, 9 ºC/min or 

11 ºC/min - according to NFPA 72 standard [2]). This type of detector is more sensitive 

than a simple fixed temperature heat detector and as such is the choice for applications in 

which reliable performance and early warning are critical, but where the environment 

makes smoke detection unsuitable. In this paper simulated data of rate-of-rise heat detec-

tors are considered with the aim of, by applying some of the data mining techniques, re-

alizing which of them generate the best predictive model. 

Sensor data mining is a relatively new area, which is now reaching a certain level of 

maturity. Sensor data brings numerous challenges with it in the context of data collection, 

storage and processing. Data mining is an iterative process of extracting hidden patterns 

from large data sets. A variety of data mining methods such as clustering, classification, 

frequent pattern mining, and outlier detection are often applied to sensor data in order to 

extract actionable insights. This data usually needs to be compressed and filtered for 

more effective mining and analysis. The main challenge is that conventional mining 

algorithms are often not designed for real time data processing. Therefore, new 

algorithms for sensor data stream processing need to perform the analytics in a single 

pass in real time. In addition, the sensor scenario may often require in-network 

processing, wherein the data is processed to higher level representations before further 

processing. This reduces the transmission costs, and the data overload from a storage 

perspective [3]. However, the simple application of the data mining technique to sensor 

data may not be as successful as expected because sensor data are mostly mere numerical 

values. Thus, contextual data should be incorporated in the database for data mining as 

well as sensor data [4]. In addition, several algorithms must be applied to the application 

before a suitable algorithm for the selected data types can be found. Therefore, the 

selection of a correct data mining algorithm depends not only on the goal of an 

application, but also on the compatibility of the data set. 

The aim of this paper is to apply some of data mining techniques on rate-of-rise heat 

detector simulated data in order to see which of the chosen algorithms has the best classi-

fication and predictive accuracy and is the most appropriate for a particular case.  

The rest of this paper is organized as follows. The simulation of rate-of-rise sensor 

data starting from the fire ignition is given in Section 2. The analysis of data mining 

techniques and the experimental results are given in Section 3 and Section 4, 

respectively. Finally, Section 5 gives the conclusion. 

2. THE FIRE DETECTION MODEL 

The model used for the simulation is based on a set of functional relations for the 

temperature and velocity of fire gases in a ceiling jet proposed in [5] and on NFPA 72 
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standards [2].  Specifically, the heat release rate Q[kW] of the fire is assumed to grow 

with time t[s] according to a power-law relationship as follows:  

                                                               2Q t                                                              (1) 

where α is a constant for a particular fuel. To characterize the difference between fuels, 

the concept of "critical time" tc[s], is introduced to describe the fire intensity. Time tc is 

defined as the time at which a power-law fire would reach a heat release rate of 1055 

[kW] [6]. In terms of tc, Equation (1) becomes  
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Fires are classified as being either slow-, medium-, or fast-developing from the time 

that established burning occurs until the fire reaches a heat release rate of 1000 [Btu/s] 

(1055 [kW]). Figure 1 and Table 1 present the power-law heat release rate.  

Table 1 Power-law heat release rate  

Fire Growth Rate Growth Time tg[s]   [kW/s2]  

Slow tg  400   0.0066 

Medium 150  tg < 400 0.0066 <   0.0469 

Fast tg < 150  > 0.0469 

 

 

Fig. 1 Power-law heat release rate  

For a height H (ceiling height or height above the fire), the temperature rise T [
0
C] 

and velocity u of fire gases at a radial distance from the fire plume axis r[m] are given in 

dimensionless form as the reduced gas temperature T2
*
 and reduced gas velocity u2

*
  

respectively, by 
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where 
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the reduced time 
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In the above equations, Ta is the initial ambient temperature of the room (before the start 

of the fire), g is the gravitational constant, Cp  and 0 are the specific heat and density of 

air at the ambient conditions, respectively [6]. 

For t
2
fires authors of [5] developed the following specific relations for T2

* 
: 
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where 
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In [2] a method for determining the application spacing for both fixed-temperature 

heat detectors and rate-of-rise heat detectors is provided. This method is only valid for 

use when detectors are to be placed on a large, flat ceiling. It predicts detector response to 

a geometrically growing flaming fire at a specific fire size. This method takes into 

account the effects of ceiling height, the radial distance between the detector and the fire, 

threshold fire size [critical heat release rate (QCR)], rate of fire development, and 

detector response time index. Annex B of [6] assumes a convective heat release rate 

fraction equal to 75 percent of the total heat release rate. For burning conditions that are 

substantially different (i.e. different convective heat release rate fraction), the last two 

equations in Annex B are replaced as follows [7]:  
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The dimensionless gas velocity for t
2
fires was determined to be: 
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The expression for the velocity with r/H of 0.3 is based on work [8]. The above ex-

pressions for ceiling gas temperature and velocity can be substituted into the heat transfer 

equation for the temperature of the thermal sensing element of the detector at Td (t) and can 

be integrated. Using the condition that the initial temperature of the thermal sensing element 

of this detector is equal to the ambient temperature (Td (0) = Ta)), the equations for 

calculating the response of fixed temperature and the rate of temperature rise detectors are 

from Beyler [9]. Beyler's integration eliminates thousands of mathematical operations by 

eliminating the iterative solution to the heat transfer equation. The use of a computer program 

is still required if this technique is to be a common tool for fire protection engineers. 

A detector activation temperature for fixed heat detectors can be calculated using the 

equation: 
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A rate of temperature change for rate-of-rise detectors is given in the next equation:               
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In equation (16), RTI is the response time index [m
1/2

s
1/2

] which is a measure of the 

thermal sensitivity of the detector. This is a property of the thermal sensing element itself 

without external influence such as affecting the convective heat transfer coefficient 

through the air speed. Equations (1) to (16) constitute a complete mathematical descrip-

tion of the transient response of a thermal detector to a t
2
fire. This is the basis for all 
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current designs of thermal detection systems. The procedure presented above can be used 

to estimate the response of rate-of-rise heat detectors for either design or analysis pur-

poses. In this case, it is necessary to assume that the heat detector response can be mod-

eled using a lumped mass heat transfer model. The user must determine the rate of tem-

perature rise at which the detector will respond from the manufacturer's data. The user 

must use equation (15) instead of equation (14) in order to calculate the rate of change of 

the detector temperature. This value is then compared to the rate of change at which the 

chosen detector is designed to respond [2]. 

3. DATA MINING USING WEKA   

WEKA stands for Waikato Environment for Knowledge Analysis [10]. WEKA is a 

collection of machine learning algorithms for data mining tasks. The algorithms in WEKA 

can be applied directly to a dataset, which was performed in this paper. When WEKA is 

fired up, it is possible to choose among four different user interfaces: the Explorer, the 

Knowledge Flow, the Experimenter, and command-line interfaces. The easiest way to use 

WEKA is through a graphical user interface called Explorer. This gives access to all of its 

facilities using menu selection and form filling [11].  

The WEKA Explorer interface contains tools for data pre-processing, classification, 

regression, clustering, association rules, and visualization.  
 

3.1. Preparing the data 

Preparing input for a data mining investigation usually consumes the bulk of the effort 

invested in the entire data mining process. The solution of the equations presented above 

requires thousands of mathematical operations which are best solved by a computer. For 

the purpose of this paper, the program is written in MATLAB. The parameters used for 

simulation purposes, in order to apply some of the data mining algorithms on them, 

include: the initial ambient temperature Ta = 10 [
0
C], the height above the fire H = 4 [m], 

rate-of-rise heat detectors designed to activate at a nominal rate of temperature rise of 

ROR = 9 [
0
C/min], the spacing between detectors S = 9.1 [m], the response time index 

RTI = 98 [m
1/2

s
1/2

], the critical time tc = 150 [s] (a fast developing fire), the upper limit 

value of the heat release rate Q = 5000 [kW] and simulation time is tsim = 600 [s]. For the 

given parameters, the simulation program written in MATLAB shows that the detector 

activates at 88.2 [s] after fire ignition with a heat release rate of 365 [kW].  The 

simulation results are then exported to Excel .csv form (Fig. 2 a)) and later imported to a 

WEKA data mining tool (Fig. 2 b)). The input to the WEKA package can be in .arff 

format or Excel .csv. For the experiment described above, there are 13 attributes and 101 

instances. For a numeric attribute, it is possible to see its minimum and maximum values, 

mean, and standard deviation (Fig. 2 b).  
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a) 

 
b) 

Fig. 2 a) .csv file of sensor data, b) data imported in WEKA 

In this paper, some of the data mining techniques are applied incorporating contextual 

data with sensor data, as the 13
th

 attribute - class. Data from the first 101s after fire 

ignition are used and it is assumed that the values under approximately ROR = 4 [
0
C/min] 

belong to class no, the values above approximately ROR = 9 [
0
C/min] mean alarm and 

the values in between belong to class alert (as is shown in Fig. 3 and 4 using the 

Visualize tab of WEKA Explorer interface).  
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Fig. 3 Rate of temperature rise as a function of time   Fig. 4 Heat release rate as a function of time 

By choosing the Select Attributes tab it is possible to evaluate the given attributes. Info-

GainAttributeEval evaluates the attributes by measuring their information gain with respect 

to the class. It discretizes numeric attributes first using the MDL-based discretization 

method (it can be set to binarize them instead). This method can treat missing as a separate 

value or distribute the counts among other values in proportion to their frequency. Gain-

RatioAttributeEval evaluates attributes by measuring their gain ratio with respect to the 

class (Table 2.) [11]. Looking at Table 2 it can be concluded that attributes T2f (Eq. 11), A 

(Eq.7), Ratio1 (Eq. 4), Ratio2 (Eq. 3), Ratio3 (Eq. 13) are constants and have a value of 0 

so they can be removed from the attribute list by using the Remove filter.  

Table 2 Attribute evaluation 

Attribute InfoGainAttributeEval GainRatioAttributeEval 

t 1.298 0.391 

DTd 1.35 0.45 

Tgas 1.288 0.424 

Q 1.217 0.403 

T2f 0 0 

A 0 0 

Ratio1 0 0 

Ratio2 0 0 

tstar2 1.3 0.392 

deltaTstar2 1.288 0.424 

Y 1.389 0.446 

Ratio3 0 0 

The ReliefFAttributeEval is instance-based: It samples instances randomly and checks 

neighboring instances of the same and different classes. It operates on discrete and con-

tinuous class data. Parameters specify the number of instances to sample, the number of 

neighbors to check, whether to weigh neighbors by distance, and an exponential function 

that governs how rapidly weights decay with distance [11]. The ReliefFAttributeEval ob-

tained results are shown in Table 3: 
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Table 3 Attribute evaluation using ReliefAttributeEval 

Attribute ReliefAttributeEval  

Y 0.711 

DTd 0.688 

deltaTstar2 0.688 

Tgas 0.688 

tstar2 0.76 

t 0.778 

Q 0.621 

3.2. Classification algorithms 

The main advantage of using WEKA is the application of learning methods to a data-

set and analyzing its output to extract information about the data. These learning methods 

are called classifiers [12]. In this paper the classifiers from WEKA are used in order to 

analyze the classification accuracy of simulation data. Classification here means the 

problem of correctly predicting the probability that an example has a predefined class 

from a set of attributes describing the example. In addition, the learning algorithms in 

WEKA can be applied and then the best one can be used for prediction purposes. The 

following algorithms were used for classification purposes in this work: 

Algorithm 1: Decision Tree classifier  

Algorithm 2: Naïve Bayes  

Algorithm 3: Neural Network classifier 

Algorithm 4: Support Vector Machines – SVM 

The applied algorithms will briefly be described in the remainder of the paper. More 

information about them can be found in [11, 12]. 

The output of the simulator is used to learn about the difference between a subject that 

is no, alert and alarm. The question of predicting performance based on limited data is an 

interesting, and still controversial, one. The repeated cross-validation technique is proba-

bly the method of choice in most practical limited-data situations. Different testing strate-

gies can be used to train and test based on the given datasets. In the averaging process, 

the given dataset is divided into two parts. One part is first used to train the classification 

algorithm. So the percentage of data to be used for training purposes should be specified 

first (using the option Percentage Split in WEKA). Then concepts learned during the 

training process are used to test the remaining data. For these experiments a 10-fold cross 

validation testing technique is used. During the process the data set is divided into 10 

subsets and the classification algorithms are fed with these subsets of data. The left-out 

subsets of the training data are used to evaluate classification accuracy. When seeking an 

accurate error estimate, it is standard procedure to repeat the cross-validation process 10 

times (10 times tenfold cross-validation) and average the results. This involves invoking 

the learning algorithm 100 times on datasets that are all nine-tenths the size of the origi-

nal. Getting a good measure of performance is a computation-intensive undertaking [11].  

3.2.1. Decision Tree Classifier 

The decision tree classifier is a tree-based classifier which selects a set of features and 

then compares the input data with them. Learned patterns are represented as a tree where 
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the nodes in the tree embody decisions based on the values of attributes and the leaves of 

the tree provide predictions. The main advantage of a decision tree classifier is its classi-

fication speed. WEKA uses the J48 decision tree which is an implementation of the C 4.5 

algorithm [12]. The attribute with the maximum gain ratio, as shown in Table 2, is DTd – 

the rate of temperature change - and it is selected as the splitting attribute (Fig. 5). The 

numbers given in parentheses are the number of instances assigned to that node number 

followed by incorrectly classified instances. 

 
Fig. 5 J48 decision tree 

3.2.2. Naïve Bayes 

Naïve Bayes gives a simple approach, with clear semantics, for representing, using, and 

learning probabilistic knowledge. It can achieve impressive results [11]. The Naïve Bayes 

classifier produces probability estimates rather than hard classifications. For each class 

value, it estimates the probability that a given instance belongs to that class. Most other 

types of classifiers can be coerced into yielding this kind of information if necessary. 

3.2.3. Neural Network Classifier 

The neural network classifier is used for many pattern recognition purposes. It uses 

the backpropogation algorithm to train the network. The accuracy of the neural network 

classifiers does not depend on the dimensionality of the training data [12]. 

3.2.4. Support Vector Machines 

The support vector machine classifiers work by generating functions from the input 

training data. This function is used as a classification function. They operate by finding a 

hypersurface in the space of possible inputs. This hypersurface will attempt to split the 

positive examples from the negative examples i.e., no fire from the alarm. If the dimen-

sionality of the input data is high, then the SVM takes more time for training [12]. 

4. RESULTS 

Using the above mentioned algorithms certain simulations were performed and the 

following results were obtained. 
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4.1. Summary of accuracy 

There are many methods and measures for estimating the strength and the accuracy of a 

classification/predictive model. Performance measures for numeric predictions are given in 

Table 4 while simulation results for each of the applied algorithms are presented in Table 5. 

Table 4 Performance measures for numeric prediction 

 

Table 5 Performance measures for the applied algorithms  

J48 

Correctly Classified Instances 99 

Incorrectly Classified Instances  2 

Kappa statistic 0.9671 

Mean absolute error 0.0132 

Root mean squared error 0.1149 

Relative absolute error 3.2657 % 

Root relative squared error 25.5854 % 

Coverage of cases (0.95 level) 98.0198 % 

Mean rel. region size (0.95 level) 33.3333 % 

Total Number of Instances 101 
 

Naïve Bayes 

Correctly Classified Instances 98 

Incorrectly Classified Instances 3 

Kappa statistic 0.9515 

Mean absolute error 0.0201 

Root mean squared error 0.1362 

Relative absolute error 4.9655 % 

Root relative squared error 30.3256 % 

Coverage of cases (0.95 level) 98.0198 % 

Mean rel. region size (0.95 level) 33.9934 % 

Total Number of Instances 101 
 

Neural Network classifiers 

Correctly Classified Instances  99 

Incorrectly Classified Instances  2 

Kappa statistic 0.9671 

Mean absolute error 0.0216 

Root mean squared error 0.0864 

Relative absolute error 5.3369 % 

Root relative squared error 19.2383 % 

Total Number of Instances 101 
 

Support Vector Machine 

Correctly Classified Instances 98 

Incorrectly Classified Instances  3 

Kappa statistic 0.9511 

Mean absolute error 0.2288 

Root mean squared error 0.284  

Relative absolute error 56.6056 % 

Root relative squared error 63.2487 % 

Total Number of Instances 101 
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The main measure is the classification accuracy which is the number of correctly 

classified instances in the test set divided by the total number of instances in the test set. 

Getting a good measure of performance is a computation-intensive undertaking. 

In applications with only two classes, two measures named Precision and Recall are 

usually used. Their definitions are:  

 
TP

P
TP FP




 (17) 

 
TP

R
TP FN


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 (18)  

TP, FP, TN, and FN used in Eq. (17) and Eq. (18). They are the numbers of true 

positives, false positives, true negatives, and false negatives, respectively. These 

measures can be also used in the case of a larger number of classes, which in this case are 

seen as a series of problems with two classes. However, it is hard to compare classifiers 

based on two measures, which are not functionally related. If a single measure to 

compare different classifiers is needed, the F-measure is often used:  

 
2 P R

FM
P R

 



 (19)  

Another measure is the receiver operating characteristic (ROC). It is a term used in 

signal detection to characterize the tradeoff between hit rate and false-alarm rate over a 

noisy channel. ROC curves depict the performance of a classifier without regard to class 

distribution or error costs. They plot the true positive rate on the vertical axis against the 

true negative rate on the horizontal axis [11].  

Table 6 Classifier evaluation 

 CCI 

(%) 

ICI 

(%) 
TP FP P R FM ROC 

J48 98.01 1.98 0.98 0.011 0.98 0.98 0.98 0.985 

Naïve Bayes 97.02 2.97 0.97 0.005 0.976 0.97 0.971 0.999 

Neural Network 98.01 1.98 0.98 0.011 0.98 0.98 0.98 1 

Support Vector Machine 97.02 2.97 0.97 0.009 0.972 0.97 0.971 0.989 

From Table 6 it can be seen that all the applied algorithms have good predicting per-

formances but the J48 and Neural Network generate the best prediction model among the 

others. They generated a model with 98% correctly classified instances (CCI), a precision 

of 98% (0.98) but the Neural Network has a classification above the ROC curve area of 1, 

which makes it slightly better than J48. 

4.2. Classifier Error 

The following figures show classifier errors – output vs. predicted output for imple-

mented algorithms. The crosses represent correctly classified and the squares incorrectly 

classified instances. 
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Fig. 6 The classifier error for J48 

 

Fig. 7 The classifier error for Naïve Bayes 

 

Fig. 8 The classifier error for the Neural Network  

 

Fig. 9 The classifier error for the Support Vector Machine 

4.3. Confusion Matrix 

In multiclass prediction, the result on a test set is often displayed as a two-

dimensional confusion matrix with a row and column for each class. Each matrix element 

shows the number of test examples for which the actual class is the row and the predicted 

class is the column. Good results correspond to large numbers down the main diagonal 

and small, ideally zero, off-diagonal elements [11]. The obtained confusion matrices with 

information about actual and predicted results given by the applied classifiers are 

presented in Table 7. 
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Table 7 Confusion matrices  
 

J48 

Predicted class  

a b c Real class 

37 1 0 a=no 

0 13 1 b=alert 

0 0 49 c=alarm 

 

Naïve Bayes 

Predicted class  

a b c Real class 

36 2 0 a=no 

0 14 0 b=alert 

0 1 48 c=alarm 

 

Neural Network 

Predicted class  

a b c Real class 

37 1 0 a=no 

0 13 1 b=alert 

0 0 49 c=alarm 

 

Support Vector Machine 

Predicted class  

a b c Real class 

37 1 0 a=no 

1 13 0 b=alert 

0 1 48 c=alarm 

5. CONCLUSION 

The goal of predictive modeling is to build a model that can be used to predict - based 

on known examples collected in the past - future values of a target attribute.  
In this paper the model used for simulation is based on the NFPA 72 standard which 

provides prescriptive solutions that favor active fire suppression. Predictive modeling is 

performed using data mining algorithms on a small amount of rate-of-rise heat detector 

simulation data. From the classification results presented above, it can be seen that J48 

has two misclassified instances, one instance of class no is classified as alert and one 

instance of class alert is classified as alarm. In the case of Naïve Bayes, three instances 

are not classified properly, two instances of class no are recognized as alert and one of 

class alert is classified as alarm. The Neural Network has the same percent of correctly 

classified instances as J48, while the Support Vector Machine has three incorrectly 

classified instances, one of class no is classified as alert, one alert instance is classified as 

no and one alarm instance is wrongly recognized as alert. It can be concluded that the 

J48 Tree classifier model and Neural Network classifier have a higher level of 

classification accuracy than the Naïve Bayes algorithm and Support Vector machine, 

which makes them more appropriate for the case of the rate-of-rise heat detector 

prediction model. The advantage of the Neural Network classifier is the classification 

above the ROC curve area of 1, which makes it slightly better than J48.  

Future work will be based on combining data from different sensors considering large 

amounts of data. Prediction in the sensor networks can be performed in a way that each 

sensor learns a local predictive model for the global target classes, using only its local 

input data. By classifying the large dataset, at the sensor nodes level, normal values can 

be discarded and only the anomaly values will be transmitted to the central server. Thus, 

the number of sensors that need to report their measurements will be reduced by reducing 
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both node activity and bandwidth. It should also lead to faster response time of detectors 

which will directly influence the response time of the fire protection system entirely.   

Also, directions of further research will be based on the EN54 standard which tends to 

provide performance requirements that favor passive fire protection. The purpose of the 

research will be to analyze the pros and cons between NFPA 72 and EN 54 standards in 

this particular application case. 
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DUBINSKA ANALIZA I PREDIKCIJA PODATAKA 

TERMODIFERENCIJALNOG DETEKTORA TOPLOTE 

Ekstremne situacije, kao što je požar, mogu prouzrokovati masivna oštećenja objekata i  situacije 
opasne po ljudske živote. Rana detekcija požara je važna zbog spašavanja ljudskih života, brzog 
gašenja požara i smanjenja štete. Za detekciju požara obično se koristi jedan ili kombinacija više 
senzora (detektori toplote, dima, plamena) i algoritam detekcije. Senzori mogu biti dio bežičnih 
senzorskih mreža ili raditi samostalno. U ovom radu primjenili smo neke od algoritama dubinske 
analize podataka na simulacijske podatke termodiferencijalnog detektora toplote. Dubinska analiza 
podataka (data mining) se pokazala kao efikasna tehnika u pogledu otkrivanja korisnog znanja iz 
velike količine podataka prikupljene od strane mnogobrojnih senzora. Predikcije u senzorskim 
mrežama mogu biti izvedene na način da svaki senzor uči lokalni predikcijski model koristeći jedino 
sopstvene lokalne ulazne podatke. Samo ciljne prediktivne klase svakog očitanja se šalju ka gateway-u 
ili baznoj stanici. Važna klasa svakog algoritma jesu prediktori, koji koriste senzorske ulazne podatke 
za predikciju izlazne funkcije od interesa. Cilj rada je bio izvesti analizu nekoliko različitih 
klasifikacijskih algoritama kako bi ustanovili koji od njih daje najbolje rezultate u slučaju 
termodiferencijalnog detektora toplote, okarakterisani visokom tačnošću i malom greškom. 

Kljuĉne reĉi: dubinska analiza podataka, J48, naivni Bayes, neuronske mreže, termodiferencijalni 

detektor, SVM 

http://www.cs.waikato.ac.nz/ml/weka

