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Abstract. In this paper a one-degree of freedom passive vibration isolator system which 
is subject to harmonic base excitation is analyzed. The isolator is modellled as a parallel 
combination of a stiffness and damping element with cubic non-linearity. The method of 
averaging is used to obtain the steady-state harmonic response. A parametric analysis is 
conducted in order to investigate the influence of the system parameters on the relative 
and absolute transmissibility of the system from the viewpoint of possible improvement of 
the transmissibility of a system with linear viscous damping. 
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1. INTRODUCTION 

There are many objects that are vibration-sensitive and have to be protected from vi-
brations transmitted via a host structure. Such objects are, for example, civil engineering 
structures or some equipment transported by vehicles. The use of passive isolators is one 
of the most widely applied approaches for the vibration protection of these systems. 

The performance of passive isolators is usually evaluated by considering displacement 
transmissibility, which is a measure of the reduction of transmitted motion afforded by an 
isolator. Two types of displacement transmissibility indices are defined: absolute trans-
missibility and relative transmissibility. The absolute transmissibility is the ratio of the 
vibration amplitude of the equipment to the vibration amplitude of the host structure 
(base) [1], [2], which should be as small as possible. The other characteristic is the rela-
tive transmissibility. It represents the ratio of the relative deflection amplitude of the iso-
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lator to the displacement amplitude imposed at the base [1], [2], which is expected to be 
as close to unity as possible. Passive linear isolators are usually modelled as one-degree-
of-freedom (1-DOF) discrete systems under harmonic base excitation. The performance 
characteristics of these isolators with various types of damping forces have been widely 
reported in the literature [1]-[5]. However, we must take into account the non-linearity 
present in the damping mechanisms is also important, because it can have an important 
influence on the outcome. 

A common type of damping in isolation systems is viscous damping. In this case the 
damping force is dependent on the relative velocity across the damper. If the damping 
force is proportional to this velocity, the damping is linear. This type of damping is used 
to characterize some elastomeric materials or the effects of air damping at low velocities. 
One type of non-linear viscous damping occurs when the damping force is proportional to 
the square of the relative velocity, and this is attainable from a turbulent flow of a fluid 
through an orifice [6], [7]. A generalized non-linear damping force can be described as 
being proportional to the pth power of the relative velocity across the damper. The case 
p=0 represents a Coulomb damper; the values p=1 and p=2 represent linear viscous and 
quadratic damping, respectively. Other values of the parameter p characterize damping 
properties in some particular system configuration, such as pipes and U-tubes (see [6] and 
references cited therein). The damping of certain alloys and composite materials is some-
times described by a power law as well [8]. 

Ruzicka and Derby [6] considered a 1-DOF system with a velocity-pth power damp-
ing mechanism by using the concept of equivalent viscous damping. Varying the value of 
the exponent p between 0.5 and 5, they presented its effect on transmissibility and ampli-
fication factor characteristics graphically. Ravindra and Mallik [9] analyzed a 1-DOF 
isolation system with a symmetric and asymmetric restoring force and with velocity-pth 
power damping for the cases p=1, 1.5, 2, 3, where the second and the last value represents 
fractional and cubic damping models. These authors demonstrated that the increase in the 
damping index p and a damping coefficient can eliminate the appearance of the undesir-
able jump in the transmissibility curve or reduce the jump width. Xiong et al. [10] investi-
gated a nonlinear interactive system consisting of a piece of equipment, a traveling flexi-
ble ship excited by waves and a nonlinear isolator placed between them. Three cases re-
garding non-linearities of the isolator were considered: non-linear pth-power damping but 
linear stiffness; qth-power stiffness but linear damping; and the combination of pth-power 
damping and qth-power stiffness. They gave practical guidelines for the design of that 
vibration isolation system, which includes the fact that an increase of the nonlinear 
damping power p provides substantial reductions in the power transmission to the equip-
ment at the resonance frequency of the isolator. 

To characterize the influence of non-linear damping and extend some of the results 
found by Ruzicka and Derby [6], a 1-DOF vibration isolation system with linear stiffness 
and pure cubic damping is examined in this paper. The system is analyzed analytically 
from the viewpoint of displacement transmissibility. The results for cubic damping are 
compared with the case of linear viscous damping, to highlight the positive and negative 
effects of the non-linear system considered. 
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2. THE MODEL OF THE SYSTEM AND ITS EQUATION OF MOTION 

The system considered in this paper is shown in Fig. 1. It comprises an isolated mass 
m and a harmonically moving base; the isolator is modelled by a linear spring with stiff-
ness k1 and a non-linear damper. The coefficient of linear viscous damping is c1 and the 
coefficient of cubic damping is c2. 

The equation of motion with respect to the relative displacement z = x − y and for the 
harmonic base excitation y = Ysin(ωt) is given by: 
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the equation of motion transforms to: 
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Fig. 1 A vibration isolation system with a spring and  
a viscous damper subjected to base excitation 

2.1 Solution procedure 

In order to find a steady-state response of the system, the method of averaging is used 
[11]. The solution of Eq. (3) is assumed in the form 

 )),(sin()( τϕτ= Uu  (4) 

with 

 ),()( τψ+τΩ=τϕ  (5) 

where U is the amplitude of the relative motion and ψ is the phase. 
The first time derivative of the solution (4) has the form 

 )),(cos()( τϕΩτ=′ Uu , (6) 
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with the constraint: 

 .0cossin =ϕψ′+ϕ′ UU  (7) 

The derivative of the expression (6) is: 

 .sin)(cos ϕψ′+ΩΩ−ϕ′Ω=′′ UUu  (8) 

Substituting Eqs. (4)-(6) and (8) into (3), and using Eq. (7) yields: 
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Averaging the right-hand sides of Eqs. (9) and (10) over a period of 2π 
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they are simplified to: 
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The steady-state solutions satisfy 0=ψ′=′U , i.e.: 
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Combining Eqs. (15) and (16), the following implicit amplitude-frequency equation is 
obtained: 
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3. ON THE DISPLACEMENT TRANSMISSIBILITY 

Due to the definition of the amplitude U and Eqs. (4) and (2a), there is equivalence 
between the relative transmissibility Tr and this amplitude: 
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 .UTr ≡  (18) 

The absolute displacement transmissibility Ta is equal to the amplitude V of the abso-
lute displacement v= x/Y : 

 .VTa ≡  (19) 

where: 

 ,1cos22 +ψ+= UUV  (20) 

with the term cosψ being found from Eq. (14). 
The displacement transmissibility characteristics are presented below in dB, i.e. as 

20 ⋅ log10Tr and 20 ⋅ log10Ta. 

3.1 Linear viscous damping 

For the case of linear viscous damping, the non-linear damping ratio is equal to zero 
ζ2=0, so that Eq. (17) simplifies to 

 .0)21(2)1( 22242 =−Ωζ−+Ω− 2
1 UUU  (21) 

Solving it for U and using Eq. (18), the well-known expression for the relative trans-
missibility of a system with linear damping [1] ,[2] is derived: 
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The relative transmissibility is less than unity regardless of the value of the linear 
damping ratio ζ1 for 21<Ω . Also, it is less than unity for all the values of the fre-

quency ratio Ω if 211 >ζ . If damping is increased, the resonant frequency is increased 
as well, while the relative transmissibility decreases. The low frequency attenuation rate is 
independent of the value of ζ1 and it is equal to 40 dB per decade. The high-frequency 
relative transmissibility asymptotes to unity, i.e. 0 dB [6].  

By using Eqs. (16), (18)-(20) and (22), the expression for the absolute transmissibility 
of a system with linear damping is obtained: 
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It is well-known [1], [2], [6] that isolation of vibration occurs for 2>Ω , and 
amplification takes place for 2<Ω . If damping is increased, the resonant frequency 
and the corresponding absolute transmissibility are decreased. The high-frequency ampli-
fication rate is 20 dB per decade. 
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3.2 Pure cubic damping 

The case of pure cubic damping corresponds to ζ1=0 and ζ1 ≠ 0. Equation (17) re-
duces to 

 .01632)1(1636 2224266 =+Ω−Ω−−Ωζ2
2 UUUU  (24) 

This equation is cubic in U2. Thus Eq. (18) yields the expression for the relative 
transmissibility: 
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In Fig. 2 the relative transmissibility is presented for different values of the parameter 
ζ2. It illustrates that the low-frequency attenuation rate is equal to 40 dB per decade, as in 
the case of a system with linear viscous damping. Further, the high-frequency relative 
transmissibility becomes less than unity for different values of Ω, which depends on the 
non-linear damping ratio ζ2. Here the attenuation rate is approximately 20/3 dB per dec-
ade, which agrees with the results given in [6], where it is found to be 2dB per octave. 
The additional difference between a linear system and a system with pure cubic damping 
has to do with the value of the relative transmissibility for very high values of Ω. For the 
latter it slowly tends to zero, i.e. to –∞ dB, not to unity, as does the former. 

 

Fig. 2  Variation of the relative transmissibility for a system with pure cubic damping for 
different values of the non-linear damping ratio ζ2 
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The absolute transmissibility, obtained on the basis of Eqs. (16), (18)-(20) and (25) is 
given by: 
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Fig. 3 shows how the absolute transmissibility changes with Ω for various values of 
ζ2. It can be seen that as ζ2 increases, the maximum of this transmissibility decreases, 
moving towards lower frequencies. For 2=Ω , the absolute transmissibility is equal to 
unity (0 dB), which holds also for the systems with linear viscous damping. This implies 
that the region of amplification is equal for both the systems with linear viscous and cubic 
damping. 

 

Fig. 3  Variation of the absolute transmissibility for a system with pure cubic damping for 
different values of the non-linear damping ratio ζ2 

What is also similar to the case of linear damping is the beneficial influence of damp-
ing in the region of amplification, and the detrimental influence in the region of isolation. 
However, unlike in the case of linear systems, for which the absolute transmissibility 
tends to zero (-∞ dB) as Ω →∞, for the system with pure cubic damping it tends to unity 
(0 dB), which corresponds to a rigidly connected system. In the case of cubic damping, 
the absolute transmissibility has a local minimum, the existence of which was also ob-
served by Ruzicka and Derby [6]. Fig. 3 additionally shows that this local minimum shifts 
towards higher frequencies as damping is decreased. 
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3.3 Comparison: linear and pure cubic damping 

In order to compare the absolute transmissibility of a system with linear viscous 
damping given by Eq. (23) and cubic damping given by Eqs. (25) and (26) for the equal 
values of the linear and non-linear cubic damping ratio ζ ≡ ζ1= ζ2, the ratio between the 
corresponding absolute transmissibility ΔTa is calculated and shown in Fig. 4. When the 
corresponding curve is above the horizontal axis, the absolute transmissibility of a line-
arly damped system is higher than the absolute transmissibility of a system with pure cu-
bic damping, i.e. the latter has better performance characteristics with respect to the ab-
solute transmissibility. 

It is possible to find the critical value of the damping ratio ζc for which a linear system 
has lower absolute transmissibility for all frequencies. It corresponds to the case when (Ω, 
ΔTa ) = ( 0,2 ) is a local maximum. Finding the first derivative of ΔTa, equating it with 
zero for 2=Ω , one obtains: 

 .79.0
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The graph of ΔTa that corresponds to this value is plotted in Fig. 4 as a red solid line. 

 

Fig. 4  Ratio between the absolute transmissibility of a system with linear viscous and 
cubic damping ΔTa for the same values of the damping ratio ζ ≡ ζ1= ζ2 

The shaded region shown in Fig. 5 represents a region in which ΔTa>0 for different 
values of the damping ratio. This is the region, when, for a fixed Ω and ζ ≡ ζ1= ζ2, a sys-
tem with pure cubic damping has smaller absolute transmissibility than a system with lin-
ear damping. If the damping ratio is smaller than ζc, the system with pure cubic damping 
yields smaller absolute transmissibility in the region defined by the intersection of a hori-
zontal line through some value ζ1= ζ2 (for example, 0.1 or 0.2 as indicated in Fig. 5) with 
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the left boundary of the shaded region and the value 2=Ω . If the damping ratio is 
higher than ζc (for example, 1.5 as shown in Fig. 5), it holds for the regions of Ω, the 
lower boundary of which is 2=Ω , while the upper boundary is the intersection of the 
horizontal line with the curvilinear line in Fig. 5. 

 

Fig. 5 Regions (shaded) in which ΔTa>0 for a range of the values of the damping ratio ζ ≡ ζ1= ζ2 

4. CONCLUSIONS 

It can be concluded that a system with pure cubic damping has better performance 
characteristics just for a relatively small number of combinations of the damping parame-
ter and the excitation frequency ratio Ω. However, its major advantage has to do with the 
cases with small damping. Then it gives smaller absolute transmissibility in the resonance 
region than a linear system with the same value of the damping ratio. However, it has a 
detrimental effect on the absolute vibration transmissibility in the isolation region. 
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O RELATIVNOJ I APSOLUTNOJ PRENOSIVOSTI VIBRO- 
IZOLACIONOG SISTEMA SA KINEMATSKOM POBUDOM 

Ivana Kovačić, Žarko Milovanović, Michael J Brennan 

U ovom radu se razmatra pasivni izolator vibracija sa jednim stepenom slobode sa 
harmonijskom pobudom osnove. Izolator se modeluje paralelno vezanom linearnom oprugom i 
prigušnicom kubne nelinearnosti. Metod osrednjavanja se koristi za određivanje stacionarnog 
harmonijskog odziva. Sprovodi se analiza uticaja parametara sistema na relativnu i apsolutnu 
prenosivost sa stanovišta mogućeg poboljšanja ovih karakteristika u odnosu na izolacione 
karakteristike sistema sa linearnim viskoznim prigušenjem. 

Ključne reči: Izolacija, Kinematska pobuda osnove, Prigušenje, Prenosivost 


