Vol.2, No 5, 2005 pp. 485 - 492
UDC 341.226:62-73
THE MODELING OF AIR POLLUTION CONTROL
DEVICES
USING NEURAL NETWORKS
Miomir Raos, Ljiljana Živković, Nenad Živković, Branimir Todorović
Faculty of Occupational Safety, University of Niš, Serbia & Montenegro
Abstract. The majority of methods for pollutant elimination assume
the flow of the polluted gas through the pollution control system. The
system is made of various devices which have to be chosen based on the
characteristics of the pollutant: aerosol, solid particles, droplets or
gaseous. The chosen framework and facilities depend on the type of the
pollutant: aerosol, solid particles, droplets or gaseous. There are a number
of basic parameters which have to be considered in order to define air
pollution control devices. This study represents a modeling of the named
parameters which are related to the framework and facilities of air pollution
control. In order to set the optimal parameters of a purification device,
a deterministic model of the process of purification should be determined.
Such a model is often difficult to construct, since physical and chemical
characteristics of the source of pollution are not completely known. In
this paper we propose a black-box modeling tool based on the application
of an artificial neural network.
Key Words: Air pollution control, modeling, neural network
MODELIRANJE PREČISTAČA GASOVA
PRIMENOM NEURONSKE MREŽE
Većina metoda za prečišćavanje gasova podrazumeva prolazak gasne struje
kroz neki sistem za prečišćavanje. Takav sistem se uglavnom sastoji od
ralzicitih uređaja za prečišćvanje. Izabrani sistem i njegove karakteristike
zavise o kakvom se zagađenju radi, dali su to aerosoli, čestice,
raspršene kapi ili gasovi. Svakako da noseći gas,proces emisije i
promene u izvoru zagađenja utiču na izbor sistema za prečišćavanje. Postoji
veliki broj parametara koje treba razmotriti u procesu izbora sredstava
i sistema kontrole, a ova studija predstavlja njihovo modeliranje. Osnovni
zadatak je dobijanje modela nepoznate, vremenski promenljive nelinearne
zavisnosti. Predložen je algoritam za sekvencijalnu adaptaciju mreže
radijalnih bazisnih funkcija (RBF). Adaptacija parametara i strukture je
inkorporirana u sistem proširenog Kalmanovog filtra. Za vreme adaptacije
strukture RBF mreže kombinovana su dva prilaza: izgradnja (rast) i uprošćenje.
Ključne reči: prečišćavanje vazduha, modeliranje, neuronska
mereža.