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Abstract. Ultrafiltration of macromolecular solutions was analyzed by using the
osmotic-pressure model in which the influence of the solute concentration on the mass-
transfer coefficient is taken into account. A mathematical analysis of the model clearly
shows that an increase of the solution viscosity with the solute concentration plays the
main role in the existance of a limiting permeate flux at a finite pressure difference.
The membrane resistance has no effect on the limiting permeate flux except on the
value of the pressure difference necessary to reach the limiting flux. In order to define
the Js vs. ∆p plots, a system of equations was derived, the parameters of which are to
be experimentally determined. A simulation results are presented for the ultrafiltration
of whey protein solutions in recirculating UF units under turbulent flow.

Key words: ultrafiltration, flux limitation, osmotic-pressure model, whey proteins,
mass-transfer coefficient.

INTRODUCTION

The major problem in ultrafiltration applications is the limitation of the permeate flux
to far below the pure solvent flux under the same pressure difference [1]. This limitation
is a consequence of the accumulation of retained solutes at the surface of the membrane.
During ultrafiltration of macromolecular solutions this increased solute concentration
causes a rise in the osmotic pressure which partially cancels the applied pressure
difference. The aim of this paper is to examine the main features of the modified osmotic-
pressure model based on the assumption that the mass-transfer coefficient depends on the
interfacial solute concentration.

                                                
  Received March 25, 1999
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THEORY

The stationary permeate flux Js through a totally retentive UF membrane (CP = 0) is
deduced from the film theory [2, 3]:
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where Cm and Cb are the solute concentration at the surface of the membrane and in the
bulk solution, respectively, and K is the mass-transfer coefficient (Fig. 1).
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Fig. 1. Boundary layer formation in ultrafiltration.

Thus, Cm increases with increasing Js and the limiting permeate flux is reached at the
limiting solute concentration at the membrane surface, Cml:

 





=

b

ml
l C

ClnK J (2)

Since Cml and Cb are constants for a given solution, the limiting flux Jl can only be
increased by increasing K. The mass-transfer coefficient K can be estimated from
correlation:

z
h

yx /L)(dReScA'Sh = (3)

where A' is a constant, depending only on the module geometry and flow regime (laminar
or turbulent), dh is the hydraulic mean diameter of the feed channel, L is the length of the
feed channel, Sh = Kdh/D, Sc = η/(Dρ), Re = vdhρ/η are the Sherwood, Schmidt and
Reynolds number, respectively, v is the average velocity of the feed solution, and ρ, η,
and D are the density, dynamic viscosity, and solute diffusivity of the solution at the
membrane surface. We can thus write:

y)(xx)(yx)(1yDAvK −−− ηρ= (4)

where A = A'dh
(y+z-1)L-z is a constant for any given module geometry and flow regime.

According to the osmotic-pressure model [4-9] the permeate flux is given by:
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where Rm is the membrane resistance, ∆p is the applied pressure difference, and ∆Πm is
the difference between the osmotic pressure of the solution at the membrane surface Πm

and the osmotic pressure of the permeate Πp. For a totally retentive membrane (CP = 0,
i.e. Πp= 0):
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From Eq. (1), (5), and (6) we obtain an expression for the applied pressure difference
that is necessary to reach a given steady-state permeate flux
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The slope of ∆p vs. Js curve at each point is given by
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Using an analogy with electrical circuits, Aimar and Sanchez [10] called this quantity
'mass-transfer impedance' i.e. overall mass-transfer resistance. According to Eq. (8) the
impedance is the sum of two terms: a hydraulic one Rm that is passive since it is
independent of the permeate flux, and a physicochemical one that is reactive since it
depends on the permeate flux. According to Eq. (1) we can express the derivative ∂K/∂Js
as follows:

)]/K)(JCK/(C/K)/[1)(CCK/()J/C)(CK/(JK/ 2
smmmmsmms ∂∂+∂∂=∂∂∂∂=∂∂ (9)

Substituting Eq. (9) into Eq. (8) we obtain
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The mass-transfer impedance ∂∆p/∂Js can only be infinite, for a finite value of Cm, if
the denominator of the third right-hand term of Eq. (10) is equal to zero, i.e. if the
following equation is true [10-12]:
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Eq. (11) is the condition, which must be satisfied for the limiting flux to be reached at
a finite pressure difference. Eq. (11) clearly shows that in this case K is a decreasing
function of Cm. The logarithmic derivative of Eq. (4) with respect to Cm is as follows
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Densities of macromolecular solutions vary slightly with the solute concentration, and
the importance of the diffusional term is generally much lower than of the viscosity term,
especially for the high concentrations encountered in the boundary layer [10]. We can
thus reduce the infinite impedance condition, Eq. (11), to the expression
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Eq. (13) allows an analytical solution when the variations of the solution viscosity η
with the solute concentration C take the following form:

m
1o Cη+η=η (14)

where ηo is the solvent viscosity, which can be neglected for the high C values. Therefore,
the solution viscosity η at the membrane surface is given by m

m1Cη , from which one
obtains
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Substitution of Eq. (15) into Eq. (13) and rearrangement gives
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where n = m(y−x). Eq. (16) applies to limiting flux conditions and accordingly, Cm from
this equation can be replaced by the limiting solute concentration at the membrane surface
Cml:
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i.e.
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The solution viscosity at the membrane surface is given by m
ml1Cη . The substitution

of this equation and Eq. (18) into Eq. (4) gives the mass-transfer coefficient at the limiting
flux:
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The relationship for the limiting permeate flux Jl is obtained by substituting Eqs. (17)
and (19) into Eq. (2)
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where B = AD(1-x)ρ(y-x)η1
(x-y). Eq. (20) clearly shows that the limiting flux is independent

of the membrane resistance, as confirmed experimentally by Michaels [2] and Porter [3],
and theoretically by Do and Elhassadi [13]. Eq. (20) also predicts that the logarithm of the
limiting flux Jl is a linear function of the logarithm of the bulk concentration Cb, with a
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slope equal to (-n).
Combining Eq. (7), (18), and (20) leads to an expression giving the applied pressure

difference necessary to reach the limiting flux:
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Eq. (21) suggests that this so-called threshold pressure ∆pl increases with Rm, as
confirmed by Vladisavljević et al. [14,15] within the framework of the gel theory.
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Fig. 2. Concentration polarization with gel formation.

If gelation of the interfacial solution occurs at a solute concentration Cg lower than Cml
(Fig. 2), then the limiting permeate flux is given by
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In the section below we will discuss the main features of the presented model taking
ultrafiltration of whey proteins as an example. Whey created as a by-product of cheese
and casein manufacture contains 0.6-0.8 wt% proteins (α - lactalbumin and β -
lactoglobulin) [16]. Whey protein concentrates (WPCs) produced by ultrafiltration are
used as additives in dairy, bakery, and confectionery products, soft drinks, infant formula,
and specialty dietary foods.

RESULTS AND DISCUSSION

The use of presented model requires a knowledge of some parameters, which will be
either arbitrary chosen or taken from previously published papers:

B = 2.1 × 10-5 According to Aimar and Sanchez [10];
y = 0.875 From Deissler equation (e.g., Wijmans et al. [17]);
n = 0.44 As suggested by Aimar and Sanchez [10];
Rm = 5 × 1010 Pas/m A typical value of the membrane resistance.
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The values of virial coefficients ai in the osmotic pressure relationship (Eq. 6) will be
taken from experiments by Jonsson [18]: a1 = 4400; a2 = -17; a3 = 7.9, where Cm is to be
replaced in wt% for Πm to be obtained in Pa.
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Fig. 3. Stationary permeate flux as a function of applied pressure difference
for different feed flow velocities (Cb = 5 wt%).

The stationary permeate flux is plotted against the pressure difference in Figs. 3 and 4.
For small pressure differences (when ∂∆p/∂Js ≈ Rm), the permeate flux is a linear function
of the pressure difference and virtually independent on the bulk solute concentration or
feed flow velocity. This is a pure filtration or Darcy's law region where the permeate flux
is limited by the membrane permeability. The intercept on the abscissa of each Js vs. ∆p
curve corresponds to the osmotic pressure of the feed solution. As the pressure difference
is increased the flux reaches a limiting value Jl, beyond which a further increase in the
pressure does not produce any increase in the steady-state flux. This is an ultrafiltration
region where the permeate flux is independent of the membrane resistance and limited by
the mass-transfer conditions in the boundary layer. The limiting flux increases with
increasing flow velocity and with decreasing bulk concentration, as predicted by Eq. (20).
The pressure difference necessary to reach the limiting flux also increases with increasing
flow velocity, as suggested by Eq. (21). The pure solvent flux is proportional to the
pressure difference and the proportionality constant is 1

mR − .
Fig. 5 illustrates the effect of the applied pressure difference ∆p on the mass-transfer

coefficient K and the solute concentration at the membrane surface Cm. The mass-transfer
coefficient decreases continuously with Cm, as predicted by Eq. (11). Observing the shape
of the curve representing Cm vs. ∆p, we note a point of inflection (A), whose coordinates
can be deduced from an equation: 0Cp/ 2

m =∂∆∂ , from which one obtains
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Fig. 4. Stationary permeate flux as a function of applied pressure difference
for different feed concentrations (v = 1 m/s).
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i.e., Cm = 18.76 wt% and ∆p = 5.11 × 105 Pa for the conditions as in Fig. 5.
It appears from Fig. 5 that Cm increases strongly when the stationary permeate flux

approaches the limiting value. For an example, if the operating conditions are such that the
permeate flux is only 10% below Jl, the solute concentration at the membrane surface may
be reduced by 60% as compared with Cml (Table 1). Since the membrane fouling
phenomena, such as solute adsorption on the membrane surface [9], pore plugging or
blocking by solutes [19] or gelation of the interfacial solution [1,2,20] are more pronounced
at the higher solute concentrations, it would lead to a much slower fouling kinetics.

Table 1. Mass-transfer calculations at v = 1 m/s and Cb = 5 wt%
(B = 2.1 × 10-5; y = 0.875; n = 0.44; Rm = 5 × 1010 Pas/m).

Cm
wt%

K × 106

m/s
Js × 106

m/s
∆p × 10-5

Pa
I × 10-10

Pas/m
II × 10-10

Pas/m
III × 10-10

Pas/m
5 10.34 0 0.2256 5 0.2331 0

10 7.625 5.285 3.144 5 0.8433 0.3701
15 6.379 7.008 4.392 5 2.169 2.029
20 5.620 7.792 5.340 5 4.697 7.346
25 5.095 8.200 6.328 5 9.010 21.86
30 4.702 8.425 7.512 5 15.77 58.73
35 4.394 8.550 8.994 5 25.68 152.9
40 4.143 8.615 10.85 5 39.55 425.5
45 3.934 8.643 13.16 5 58.18 1693

48.53 3.805 8.648 15.09 5 74.69 ∞

In Fig. 6 the different terms composing the transfer impedance (Eq. 10) are plotted as
a function of the interfacial concentration Cm. This plot is obtained using data from Table
1. When the interfacial concentration increases from Cb to the limiting value Cml, the third
right-hand term of Eq. (10) increases from zero to infinity. The condition to be satisfied
for the hydraulic term (I) to be greater than the physicochemical term (II+III) is as
follows:

)]/Cn[ln(C1
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For the conditions as in Fig. 6 and Table 1, it is valid for Cm < 18.40 wt%. It should be
noted that the Cm value for which the two resistances are equal is similar to the Cm value
in the point of inflection of Cm vs. ∆p curve. The Cm value for which the second right-
hand term of Eq. (10) is equal to the third right-hand term is given by Cb exp(1/2n) =
15.58 wt%.
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Fig. 6. Different terms composing mass-transfer inpedance versus interfacial solute
concentration at v = 1 m/s and Cb = 5 wt%.

CONCLUSION

The osmotic-pressure model employed here to examine ultrafiltration of whey protein
solutions is based on an approach proposed by Aimar and Sanchez [10], in which the
mass-transfer coefficient is considered as a decreasing function of the solute concentration
at the membrane surface. It was shown that when the pressure difference increases from
zero to ∆pl, the permeate flux is at first limited by the membrane resistance and then by
the osmotic pressure of the interfacial solution, but only a decrease in the mass-transfer
coefficient can explain the existence of a real limiting flux at a finite pressure difference.
Both Jl and Cml increase with increasing flow velocity and with decreasing bulk solute
concentration, but are independent of the membrane resistance, which influences only the
applied pressure difference necessary to reach the limiting flux. When the permeate flux
approaches the limiting value, we noticed a drastic increase of the solute concentration at
the membrane surface, whose consequence is to enhance membrane fouling phenomena
such as protein adsorption or gelation on the surface of the membrane.

LIST OF SYMBOLS

A constant in Eq. (4)
A' constant in Eq. (3)
ai virial coefficients in in the osmotic pressure relationship (Eq. 6)
B constant in Eq. (20)
C solute concentration, wt%
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Cb solute concentration in bulk solution, wt%
Cg solute concentration at which gelation of interfacial solution occurs, wt%
Cm solute concentration at the surface of the membrane, wt%
Cml interfacial solute concentration corresponding to the limiting flux, wt%
Cp solute concentration in permeate, wt%
C1 local solute concentration in boundary layer, wt%
D diffusion coefficient of solute, m2/s
dh hydraulic mean diameter of feed channel, m
e 2.71828…
I, II, III terms in relationship for mass-transfer impedance (Eq. 10), Pa s/m
Js stationary permeate flux, m/s
Jl limiting permeate flux, m/s
K mass-transfer coefficient, m/s
L length of feed channel, m
m exponent in Eq. (14)
n constant in Eq. (16)
∆p pressure difference, Pa
∆pl pressure difference necessary to reach the limiting flux, Pa
∂∆p/∂Js mass-transfer impedance, Pa s/m
Rm hydraulic resistance of membrane, Pa s/m
Re Reynolds number, (-)
Sc Schmidt number, (-)
Sh Sherwood number, (-)
v average flow velocity of feed solution, m/s
x, y, z exponents in correlation (3)
δ thickness of boundary layer, m
η dynamic viscosity of solution, Pa s
ηo dynamic viscosity of pure solvent, Pa s
η1 constant in Eq. (14)
Πm osmotic pressure of interfacial solution, Pa
Πp osmotic pressure of permeate (for an ideal membrane Πp = 0), Pa
∆Πm osmotic pressure difference between interfacial solution and permeate, Pa
ρ density of solution, kg/m3
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UTICAJ KONCENTRACIONE ZAVISNOSTI VISKOZITETA
NA LIMITACIJU FLUKSA PERMEATA PRI ULTRAFILTRACIJI

Goran T. Vladisavljević, Miloš B. Rajković

Ultrafiltracija rastvora makromolekula je proučavana primenom modela osmotskog pritiska u
kome je uzet u obzir uticaj koncentracije rastvorka na koeficijent prenosa mase. Matematičkom
analizom modela pokazano je da porast viskoziteta rastvora sa povećanjem koncentracije
rastvorka igra glavnu ulogu u javljanju graničnog fluksa pri konačnoj razlici pritisaka. Otpor
membrane ne utiče na granični fluks permeata, već samo na vrednost razlike pritisaka pri kojoj se
uspostavlja granični fluks. Radi definisanja zavisnosti Js od ∆p, izveden je sistem jednačina čiji se
parametri moraju odrediti eksperimentalno. Prikazani su rezultati numeričke simulacije procesa
ultrafiltracije rastvora proteina surutke u protočnim aparatima sa recirkulacijom napojnog toka
pri turbulentnom režimu strujanja.

Ključne reči: ultrafiltracija, limitacija fluksa, model osmotskog pritiska, proteini surutke,
koeficijent prenosa mase


