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Abstract. Motivated by the canonical BRST quantization procedure, we analyze the 
classical structure of the free Ramond string field theory. The gauge symmetries of the 
theory are shown to be infinitely reducible, and the higher structure functions are 
explicitly found. 
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1. INTRODUCTION 

The presence of the inverse picture changing operator in the kinetic term for Witten's 
formulation of the Ramond string field theory [1] is the origin of extra gauge symmetries 
[2,3], additional to the ones generated by the BRST operator.The authors of Ref. 3 argue 
that these extra gauge symmetries are just what we need to be able to impose two gauge 
conditions on the Ramond string field, 00 =ψc , 00 =ψe  (the zero modes of the conformal 
antighost 0c  and the superconformal antighost 0e  anihilate the string field ψ). 

For a proper quantization of this theory we apply the Batalin-Fradkin (BF) 
hamiltonian approach [4,5]. In sect. 2 we introduce the definitions of the action, BRST 
charge, inverse picture changing operator for the free Ramond string theories and some 
properties useful for later convenience. In sect. 3 we analyze the features of the classical 
hamiltonian dynamics which is a basis for the BRST quantization. We find that all the 
constraints are first class, and that the generators of the gauge transformations are 
associated with the already known gauge symmetries (sec. 4). In sect. 5 we show that all 
the symmetries are infinitely reducible, and that the symmetry generated by the BRST 
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charge have growing reducibility. We also find explicitely the higher structure functions. 
Sect. 6 is devoted to conclusions. 

2. LAGRANGIAN 

The free field theory of the Ramond superstring is described by the action [1] 

 ψψ= YQI  (1) 

where  ψ and ψ  are Grassmann valued vectors belonging to the Fock representation of 
the commutation relations: 
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The BRST charge of the first quantization Q and the inverse picture changing operator Y 
are given by  
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where primes denote first derivatives over the corresponding arguments. 
For the purpose of the Hamiltonian analysis it is necessary to explicitly separate time 

derivatives in the kinetic operator Y Q. To this end we make use of the Fourier 
decomposition 
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Then the action  I = ∫ dtL defines the Lagrangian of the theory 

 ψψ+ψψ−ψψ+ψψ−= YCYBYAYAL )(
2
1 &&&& , (5) 

where the dot denotes time derivative. 
To proceede we need some properties of the operators A, B, C and Y appearing in (5). 

We shall use the well known ones 
 0},{   , 02 == YQQ , (6a) 
from which it follows 
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and also 
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where we have adopted the notation c ≡ c(π/2) and e ≡ e(π/2) to simplify further 
exposition. 

3. HAMILTONIAN AND CONSTRAINTS 

Let us begin with the definition of the canonical momenta: 
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As a consequence of the singularity of the operator Y A the following primary constraints 
appear: 
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Up to these constraints the velocities in (8) can be expressed in terms of the momenta. 
To do that we need the "inverse" of YA: 
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where č ≡ c − c0, c0 being the zero component in the Fourie decomposition of c(σ) (note 
that A = c0/2i). In appendix A we explicitly found the form of the operator Z, 

 ])()([2 001 eeieiecAiZ δ+δπ−= , (11) 

where 02 ciA ≡ . 
With the help of the operator Z we are able to construct the canonical Hamiltonian, 

 ψψ−= YCZHc PP , (12) 
where  
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The total Hamiltonian is then obtained by adding to Hc all primary constraints with the 
corresponding multipliers: 

 ∑
=α
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3

1
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Now, to insure consistency of the theory, we demand that all the primary constraints 
be preserved in time [6]: 
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Using the fact that the basic non-zero Poisson brackets are given by 

 1},{},{ =ψπ=πψ   

we find the following secondary constraints: 
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These constraints should also be preserved in time, as a consequence of which we obtain 
tertiary constraints: 
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In the next step we examine the consistency conditions of the tertiary constraints and find 
that these are identically satisfied. At that step the procedure is finished with the result 
that no multiplier is determined and all the constraints are the first class ones. Their 
Grassmann parities are given by 1

000
)()( ααα δ=Φε=Φε , α0 = 1,2,...,5. 

The algebra of the constraints is easily checked to be Abelian: 

 0},{ =ΦΦ  (17) 

where, for the purpose of simplifying forthcoming exposition, we introduced the matrix 
notation : 
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On the other hand, the constraints commute with the Hamiltonian only weakly defining 
structure constants 0V  and V0: 

 00 },{        , },{ VHVH cc Φ=Φ−Φ=Φ . (19) 

By a direct calculation one obtains 
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4. GAUGE SYMMETRIES 

The presence of first class constraints in any theory indicates that the theory posseses 
a gauge symmetry with as many gauge parameters as is the number of primary first class 
constraints. Applying the well known algorithm for constructing gauge generators [7] to 
our case we find 
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where η, ω, ε and εωη  , ,  are gauge parameters. Their action on fields ψ will then be 
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which is just the form of gauge symmetries of the action (1) we have expected. 

5. REDUCIBILITY AND HIGHER STRUCTURE FUNCTIONS 

It is easy to see that not all the gauge parameters in Eq. (22) are independent. From 
the nilpotency of the BRST charge of the first quantization Q, for example, it follows that 
changing the parameter ε according to δε = Qε1 will not change the gauge transformation 
δ3ψ. Similarly, the change of the parameters η and ω by δη = Yη1 and  δω = Yω1 will be 
ineffective as follows from Eq.(7). We say that the theory is reducible. In the 
Hamiltonian approach this fact is manifested in the existence of "constraints on 
constraints". For example, one easily finds that 

 , 0   , 0   , 0)(' 321 =Φ=Φ=Φδ Ace  (23a) 
and also 
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Using the matrix notation we can rewrite Eq.(23) as 

 , 01 =ΦT  (24a) 
where T1 is 5×7 matrix of the form 
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The relations (24) define the so-called zero modes of the constraints Φ, and are the 
consequence of the fact that not all Φ's are independent. But neither are the relations 
among them. There exists another matrix T2 whose null−vectors define zero modes of the 
relations (24) themselves: 

 012 =TT . (25) 

The matrix T2 is 7×9 matrix and it has zero modes of its own. The procedure is never 
ending and the theory is, consequently, infinitely reducible. Moreover, we have here the 
so-called growing reducibility, since the number of zero modes at any stage is bigger 
than the one of the preceding stage. The complete set of zero modes is then  
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where Nk are 2×2 matrices of the form 
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and Mk are (2k + 1) × (2k + 3) matrices given by 
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Similarly, we find the zero modes of the constraints Φ : 
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and also 
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dµ(σ)). Explicitly: 

 , 
0

0








≡

k

k
k M

N
T  (30a) 

 , 
0

0   , 
0

0)(' 2

212 










−
≡








−

δ
≡− c

eN
c

e
N kk  (30b) 

and  

  
0

0























−

−
−

≡

CBA

CBA
CBA

M k  (30c) 

are (2k + 3) × (2k + 1) matrices. 
The coefficients Tk and kT  completely define reducibility of the theory and, owing to 

its Abbelian nature, exhaust the set of structure functions necessary for the construction 
of the BRST charge. 

To construct the BRST invariant Hamiltonian, on the other hand, we need another set 
of structure functions. The way of defining those is close to what we did in the 
Lagrangian treatments of the superparticle and the superstring [8]. We start with the 
relation that defines structure constants V0 and multiply it by 1T  to obtain 

 101},{0 TVTHc Φ=Φ−= . (31) 

Since Φ's are not all independent, the general solution for the coefficient multiplying Φ  
will have the form: 
 1110 VTTV = , (32) 

which defines new structure constants V1. Similarly, multiplying Eq.(32) by 2T  from 
right, and using the relation 021 =TT  we find  

 0211 =TVT , (33) 
whose general solution 
 2221 VTTV =  (34) 

serves as a definition of new structure constants V2. Continuing this procedure we obtain 
an infinite set of  structure constants Vk: 
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 1   , 1 ≥=− kVTTV kkkk . (35) 

In a similar way, starting with the relation that defines 0V , we can define structure 
constants kV : 
 1   , 1 ≥=− kTVVT kkkk . (36) 

As will be seen in the next section the coefficients Vk, kV  (k ≥ 1) exhaust the number of 
structure functions that are necessary for the construction of the BRST invariant 
Hamiltonian. 

Solving Eqs. (35) and (36) in Appendix B we have found the explicit form of (2k + 5) 
× (2k + 5) matrices Vk and kV , (k ≥ 1): 
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6. CONCLUSIONS 

The BRST quantization of the free Ramond string field theory has been studied using 
the systematic BF method of canonical quantization. 

By analyzing the classical hamiltonian structure we have found the generators of the 
gauge transformations. They are associated with the already known gauge symmetry 
(generated by the first quantization BRST charge also present in the bosonic case) and 
the new gauge symmetry specific for the Ramond theory [2,3]. We have also shown that 
this is an infinite stage reducible theory. The extra gauge symmetry has the same number 
of constraints at any level of reducibility while for the old gauge symmetry the number of 
the constraints grows with the stage of reducibility. 
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APPENDIX A 

In this appendix the operator Z, which is defined in (11) as the "inverse" to YA, is 
constructed and the explicit form of the operators αk, kα  is found. 

We begin with the quantum mechanical problem of finding "inverse" to )ˆ(' xδ , where 
+= xx ˆˆ  is the well known position operator. Since 0)(' 2 =δ xx  the operator )ˆ(' xδ  can only 

have the "inverse up to terms proportional to 2x̂ ": 

 ξ+=δ ˆˆ1)ˆ('ˆ 2xxU . (A1) 

In the x-representation this equation is written as 

 )(   , )()()()('),( 2 xxOxyyyxdyU ψ∀+ψ=ψδ∫ , (A2) 

where U(x,y) ≡ 〈 yUx |ˆ| 〉 is the kernel of the operator Û . Solving (A2) one easily finds 
that 
 yxyxU −−=),( . (A3) 

In the momentum representation )]ˆ,ˆ[  ,ˆˆ( ipxpp −== +  this kernel takes the form 

 )]()(')(')([2|ˆ| kpkpipUk δδ−δδπ= . (A4) 

It is not difficult to show then that the operator 

 ]ˆ)ˆ()ˆ(ˆ[2ˆ xppxU δ+δπ−=  (A5) 

is just the operator whose kernel in the momentum representation is given by (A4). 
Now, having solved the equation (A1), we can easily pass to the problem of finding 

"inverse" of  δ'(e). Defining 
 0ˆ   , ˆ eipex −≡≡  (A6) 

and using ],[ 0ee  we convince ourselves that ipx −=]ˆ,ˆ[  and the problem boils down to 
(A1) with the same answer (A5). Consequently, 

 ])()([2 00 eeieieU δ+δπ−=  (A7) 
is the solution of 
 ξ+=δ 21)(' eeU . (A8) 

The next step is the construction of the "inverse" to Y = −cδ'(e). Since icc =},{ 1  we look 
for the solution of 
 )()(1 2 cOeOXY ++=  (A9) 

in the form X ∼  Uc1 . Direct calculation leads us to 

 ])()([2 001 eeieieciX δ+δπ−= . (A10) 
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Finally, having in mind the relation 1},{ =AA , one can easily verify that the equation 

 )()()(1 2 AOcOeOZYA +++=  (A11) 

has the solution displayed in Eq. (11). 
To find the operators α1, α2 and α3 of the equation (10) we multiply Y A from the left 

by Z and use (A8) to obtain 
 AAceeieAAciZYA cc ((

10
2

1 ),(ξ−−= . (A12) 
wherefrom we read the operator α1: 

 AceeiA c(10111 ),(   , ξ−≡ββ=α  (A13) 

Then, performing commutations of 1c  with c(  and A  with A leads to 

 1
2

11 α++−= eAAcciAAZYA ( . (A14) 

Comparing (A14) with (10) gives 
 AAciA −=α−≡ββ=α 31222    ,    , . (A15) 

The operators kα  (k = 1,2,3) are easily obtained after using Z+ = dZd in (10). The result 
is 
 dd kk

+α=α  (A16) 

APPENDIX B 

In this appendix the structure functions Vk and kV  are evaluated. 
To find the higher structure functions Vk and kV  (k ≥ 1) we need not know the 

operators αk, kα  in all details. It will be sufficient to use the fact that they can be written 
in the form 
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Then, a direct calculation leads to  
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which is easily checked to equal 11VT , provided the matrix V1 is given by 
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Knowing V1 one can now evaluate 21TV  and show that it is proportional to 2T  from the 
left. The corresponding coefficient will be V2 . These two steps turn out to provide 
enough motivation for the assumption that Vk has the form (37a). The verification of the 
assumption is straightforward.  

The structure constants kV  are obtained from Eq. (35) by using ddTT kk
+= , 

wherefrom it follows 
 ddVV kk

+= . (B4) 

A direct evaluation gives the result (37b). 
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UOPŠTENA KANONSKA ANALIZA  
SLOBODNE RAMONDOVE TEORIJE POLJA STRUNA 

M. Blagojević, B. Sazdović, M. Vasilić 

Motivisani BRST procedurom kanonske kvantizacije, analizirali smo klasičnu strukturu 
slobodne Ramondove teorije polja struna. Pokazano je da su kalibracione simetrije teorije 
beskonačno reducibilne i eksplicitno su nađene više strukturne funckije. 


