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Abstract. Galilean transformation properties of the total, dynamical and geometric 
phases for generally nonadiabatic and noncyclic evolution of a quantum system are 
obtained in the context of non-relativistic quantum mechanics. In particular, it is shown 
that whether the evolution of the quantum system in the interval [t1,t2] is cyclic does 
depend on the state of its (uniform) motion.  
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Since the discovery by Berry [1], in the context of non-relativistic quantum 
mechanics, of the general existence of an observable phase accumulation in the wave 
function of a quantum-mechanical system with an adiabatically changing Hamiltonian, 
the understanding of this phase has gained greatly in its deepness. The Berry phase has 
attracted great theoretical interest and it has been repeatedly corroborated by experiment. 
The restriction to adiabaticity was lifted by Aharonov and Anandan [2] by removing 
from the wave function the time integral of the expectation value of the Hamiltonian as a 
dynamical phase. It was shown that once the dynamical phase is removed, the phase 
difference accumulated during the time-evolution of the system has purely geometric 
origin. Finally, the restriction to cyclic motion, and also unitary evolution, was removed 
by Samuel and Bhandari [3]. Their work was based on the earlier investigation of 
Pancharatnam [4] on the interference of polarized light. A recent resource letter on 
geometric phases is found in [5]. In particular, the geometric phase for coherent, 
displaced number and also squeezed states of the quantum oscillator has been discussed 
repeatedly (see e.g. [6-8] ). In this paper, the Galilean transformation properties of the 
total, dynamical and geometric phases for generally nonadiabatic and noncyclic evolution 
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of a quantum system, are established. In particular, it will be shown that whether the 
evolution of the system in the interval [t1, t2] is cyclic depends on the state of its uniform 
motion.  

Consider, in an inertial frame of reference S, a quantum system undergoing generally 
nonadiabatic and noncyclic evolution during the interval [t1, t2], so that its initial and 
final states are 1,| tψ  and 2,| tψ , respectively (we are assuming throughout that the 
states are non-orthogonal and also normalized). Such evolution defines a curve in 
projective Hilbert space. Following the work of Samuel and Bhandari [3], it is known 
that the total phase Φ(t1, t2), appearing in 
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can be decomposed into a dynamic and geometric part. The dynamic part, denoted by 
δ(t1, t2), is given by the time integral of the expectation value of the Hamiltonian 
generating the evolution of the system (ћ = 1) 
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The geometric part of the phase, denoted by β(t1,t2), is determined here indirectly by 
removing the accumulation of local phase changes from the global phase, i.e. 
β(t1, t2) = Φ(t1, t2) − δ(t1, t2). The geometric phase is reparametrisation invariant, i.e. 
independent of the speed at which the path in projective Hilbert space is traversed; it 
depends only on this path [3]. Now consider another inertial frame S', moving relative to 
S with constant velocity V so that r' = r − Vt and t' = t (here we consider only the 
Galilean subgroup consisting of boosts in a constant direction). Galileo’s relativity 
principle asserts the invariance of the mechanical equations, and in particular the 
Schrödinger equation, under such transformation. As is well known [9], the effect the 
Galilean transformation produces, in this context, is to multiply the wave function by the 
phase factor, Ψ(r,t) = Ψ'(r',t')exp(iχ), with 
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Here, m is the mass of the system. This, together with (1) implies that the total phases in 
the two frames are related via 
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and also that 
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can, in (4), delineate in the frame S' the contribution of the total phase, Φ', to the phase 
θ'. Therefore, eq. (4) provides in effect the Galilean transformation for the total phase. 

Similarly, from (2) one obtains for the dynamical phases in the two frames 
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Here 't''t'
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' ψψ≡ pp  is the expectation value of the momentum operator with 

respect to state 't' ,| ψ , in S'. Finally, eqs. (4) and (6) yield Galilean transformation of the 
Pancharatnam phase  
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Obviously, the geometric phase in non-relativistic quantum mechanics is not Galilean 
invariant.  

The question now arises whether this Pancharatnam phase, which is well-defined in 
all frames, leads in special case of cyclic evolution in one frame to the cyclic evolution in 
all frames. It is demonstrated in the following that this is not the case. Consider a system 
undergoing cyclic evolution during the time interval [t1, t2]. Classically there is no 
difference between the initial and final states, and the system in its final state appears as 
if it has not undergone any evolution. From the quantum viewpoint, the final and initial  
states coincide up to a global phase, 1212 ,|)],(exp[,| tttit ψΦ=ψ  [10], so that the 
memory of the cyclic evolution is completely contained in the phase factor. This, 
together with (1), leads to the equivalent condition, ρ(t1,t2) = 1, for the evolution to be 
cyclic. Since generally eq. (5) holds good, and since ),(),( '
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1 =ρ tt' in S', one finds that cyclic evolution in non-

relativistic quantum mechanics is not a Galilean invariant notion. This, in fact, should not 
come as a surprise if one recalls that analogous situation arises even in the classical 
mechanics. Indeed, there a cyclic evolution in the frame S implies a closed orbit in the 
corresponding phase space. Due to the spatial displacement of the frames S and S', this 
closure property of the phase curve in S is not preserved in S' so that the evolution is not 
cyclic in the latter frame. 

In conclusion, the Galilean transformation properties of the total, dynamical and 
geometric phases for generally nonadiabatic and noncyclic evolution of a quantum 
system are obtained in the context of non-relativistic quantum mechanics. In particular, it 
is shown that whether the evolution of the quantum system in the interval [t1,t2] is cyclic 
does depend on the state of its motion.  
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GALILEJEVE TRANSFORMACIJE PANČARATNAMOVE FAZE 

I. Mendaš 

Galilejeve transformacije ukupne, dinamičke i gemetrijske faze za opšti slučaj neadijabatske i 
neciklične evolucije kvantnog sistema su nađene u kontekstu nerelativističke kvantne mehanike. 
Posebno, pokazano je da cikličnost evolucije kvantnog sistema tokom intervala [t1,t2] zavisi od 
stanja njegovog (uniformnog) kretanja. 

Ključne reči: kvantna mehanika, Pančaratnamova (geometrijska) faza, Galilejeva transformacija 
 


