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Abstract. An quantum mechanical operator corresponding to the tangent of the 
classical phase variable of harmonic oscillator is constructed together with the related 
phase states. The properties of these states and the way they relate to the Pegg-Barnett 
Hermitian phase operator theory are investigated. 
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1. INTRODUCTION 

The question of the proper dynamical variable corresponding to the phase of a 
quantum field has been the subject of discussion for a long time. The problem appeared 
to be solved for the first time by Dirac in 1927 only to be refuted much later, in 1964, by 
Susskind and Glogower [1]. They introduced two Hermitian dynamical variables 
analogous to the sine and cosine of the phase, but as the two variables do not commute 
this has also been regarded as an unsatisfactory solution. There have been numerous 
attempts to construct other, more satisfactory phase operators [2-6]. These are all based 
on the well known fact that for any superposition of number states of harmonic oscillator, 
the position and momentum expectation values follow exactly the corresponding classical 
motion, x(t) = Xcos(ϕ − ωt) and p(t) = mωX sin(ϕ − ωt), leading to the supposition that 
the classical phase ϕ-ωt remains a well defined concept in the quantum domain. Phase 
calculations, based on various phase formalisms, have been carried out for coherent [7], 
squeezed [8], displaced number [9] and generalized squeezed states [10]. Several 
experiments were also reported in which phase differences and their fluctuations were 
measured as a function of average photon number, and attempts were made to test some 
of the definitions against experiments [11] but no clear conclusion emerged. All this 
illustrates difficulties in formulating a simple and consistent operator of the phase of a 
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quantum oscillator and even questions the status of the phase as an observable in the 
framework of the orthodox quantum mechanical theory. This long-standing problem is of 
considerable theoretical and also experimental importance since the number-phase 
uncertainty relation depends on it. In this paper the matrix representation, in the number 
base, of an operator corresponding to the tangent of the classical phase variable is 
postulated in the framework of the conventional quantum mechanics. The exact eigenkets 
of this operator are obtained, and an approximate solution, valid for n >> 1 (n denoting 
the eigenvalue of the number operator), is also found. Based on the exact solution, the 
corresponding phase states are then introduced. It is found that the approximate 
expansion coefficients (valid for n >> 1) are closely related to the expansion coefficients 
of the phase states postulated in the Pegg-Barnett model [3-4, 6]. The completeness and 
orthonormality of the phase states associated with our postulated operator are examined, 
and it is demonstrated that these phase states indeed form a complete set, but fail to fulfill 
the orthonormality condition in its usual form. The consequences of this failure are 
discussed. Additionally, the modifications leading to the Pegg-Barnett Hermitian phase 
operator theory are investigated. 

2. OPERATOR CORRESPONDING TO THE TANGENT OF THE CLASSICAL PHASE 

One starts from the requirements that the quantum-mechanical phase should have the 
same significance as the classical phase in the appropriate limit, and that it should be 
associated with well behaved Hermitian operator so that it is, at least in principle, an 
observable quantity. Classically, the tangent of the phase angle for the simple harmonic 
oscillator is 
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From this we postulate the quantum mechanical operator in the Heisenberg picture to be 
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The symmetrization is introduced in (2.2), as usual, for two reasons: to obtain Hermitian 
operator and to resolve the ordering ambiguity. This is a "natural" quantization of the 
classical observable (2.1). In fact, by considering other, more general ordering rules one 
can construct (infinitely) many different phase operators. The properties of the phase 
operator (2.2) have not been explored and the purpose of this paper is to fill this gap. The 
matrix representations of the )(ˆ tx  and )(ˆ tp  in the number base are well known [12]. 
From the matrix representing )(ˆ tx  one finds, after some straightforward algebra, its 
inverse )(ˆ 1 tx−  and, from (2.2), the matrix representation of the operator corresponding to 
the tangent of the classical phase  
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Here εk ≡ iexp(2ikωt) with 1−=i  and k = 1,2,... . The regularities along non zero sub 
and super diagonals of this matrix are evident. The matrix is manifestly Hermitian. If we 
denote an eigenket of the operator )0(ˆˆ τ≡τ , at some initial instant of time t = 0, by its 
eigenvalue τ', then '''ˆ ττ=ττ  leads to the following three-term recurrence relation 
(n = 2,3,...) 

 )'()3)(2()'()'(]2)32[()'()1()'( 42 τ−−−τ−τ−−−=τ−+τ −− nnn tnnitintnni ,  (2.3) 

for the expansion coefficients ')'( τ≡τ ntn of the eigenkets 'τ  in the number base, 

∑ τ=τ n n nt )'(' . From the matrix representation of the τ̂  operator it is apparent that 
there are two linearly independent eigenkets corresponding to the same eigenvalue τ' (this 
being, therefore, two-fold degenerate ) 
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These two eigenkets are mutually orthogonal. The three-term recurrence relation (2.3) 
leads to the following closed form expressions for the expansion coefficients 
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In (2.7), (a)n = a(a + 1)...(a + n -1) denotes the Pochhammer symbol. Since in (2.5) and 
(2.6), n = 0,1,2,... , the hypergeometric functions appearing there are polynomials of 
order n , so that expansion coefficients tn(τ') are simply algebraic functions of the 
auxiliary complex variable z. The τ' values range in the infinite interval τ' ∈  (−∞,+∞). 
The constants c2n, and c2n+1 are determined from the normalization condition. In fact, any 
two even expansion coefficients are mutually orthogonal 

 ''22 )'()'(' nnnn ttd δ=τττ∫
+∞

∞−

∗ , (2.8) 

and similarly in the odd case one has 
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In the n >> 1 limit the three-term recurrence (2.3) becomes simply 

 )'()'()'('2)'()'( 42 τ−τ−ττ−≅τ+τ −− nnn titti ,  (2.10) 
with the relevant solution 
 τ′τ=τ arctan)'()'( in

n egt . (2.11) 

This expression is exact solution of (2.10) and only approximate solution of (2.3), valid 
for n >> 1. In (2.11), g(τ') represents a function of τ'. In particular, the choice g(τ') ≡ 
π-1/2(1 + τ'2)-1/2 leads to the approximate solution that agrees with the n >> 1 limit of (2.5) 
and (2.6) and that also satisfies (2.8) and (2.9). 

3. PHASE STATES 

Suppose that the (initial) phase angle ϕ' ranges generally in the interval from ϕ0 to 
ϕ0 + 2π, with ϕ0 representing a constant phase, and define τ' ≡ tan ϕ'. Then for each 
phase ϕ' from the first or fourth quadrant, there is another phase, ϕ' + π, that gives the 
same τ'  value (this is causing, incidentally, the two-fold degeneracy of the τ' eigenvalues 
). Therefore, the states ±τ ,'  are certain linear combinations of the corresponding phase 

states '| ϕ  and π+ϕ' , and vice versa. Now, for the n >> 1 part of the states ±τ ,' , the 
approximate solution (2.11) holds good. This in turn shows that the state proportional to 

−τ++τ ,','  corresponds to the phase state 'ϕ , and similarly that −τ−+τ ,','   

corresponds to the state π+ϕ' . This motivates the following definition of the phase states 
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for ϕ' from the first or fourth quadrant, and 
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for ϕ' from the second or third quadrant. (Note that in this case, one has 
fn(ϕ') = (−1)

n
fn(ϕ' − π)). 

Using (2.8) and (2.9) one verifies that the expansion coefficients fn(ϕ') are 
orthonormal for any n and n' 
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Thus, the phase states (3.1) are complete 
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so that in particular (cf. (3.1)) 
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In the case when n >> 1 one gets from (2.11), (3.2) and (3.3), the approximate 
expansion coefficients 
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These coefficients are closely related to the expansion coefficients of the phase states 
postulated in the Pegg-Barnett theory. 

In order to examine the orthonormality of the exact phase states, it is not permissible 
to substitute (3.6) into (3.1), invert the order of integration over ϕ' and summation over 
n, and conclude (erroneously in this case) that )(' ϕ′−ϕδ=ϕϕ . As is well known [13], 
this manipulation is not always justified and, in fact, precisely this point needs to be 
investigated. One proceeds by using the completeness of the position states to write 
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Now, Eqs. (3.1)-(3.3) and (2.5)-(2.6) imply that 
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Here, σ ≡ (ћ/2mω)1/2, θ(±x) denotes the Heaviside step function, and the upper (lower) 
sign is used when cos ϕ > 0 (< 0). The last two equations lead to [14] 
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whenever cos ϕ and cos ϕ' have the same sign, and 0' =ϕϕ  otherwise. Thus 

)'(' ϕ−ϕδ≠ϕϕ . It is of interest to note that in certain integrals the quantity 'ϕϕ , as 
given by Eq.(3.10), behaves effectively as a δ-function. For example, if one forms 

nm with the help of (3.6) 
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then )'(' ϕ−ϕδ=ϕϕ would, together with (3.4), immediately lead to δmn as needed. 

Now, )'(' ϕ−ϕδ≠ϕϕ ; instead, one finds numerically from (3.10) that the principal part 

gives the same contribution to the double integral in (3.11) as the first term, )(2
1 ϕ′−ϕδ , 

leading again to mnnm δ=  thus preserving consistency. 

4. DISCUSSION AND CONCLUSION 

It is seen that the phase states (3.1) form a complete set but fail to fulfill the 
orthonormality condition in its usual form. It is known that all Hermitian operators do not 
posses a complete, orthonormal set of eigenstates and that only those that do, represent 
the physical quantities (observables) [15]. This suggests that, in the framework of the 
conventional quantum mechanics, and in agreement with [1, 16], the phase of the 
harmonic oscillator is not an observable. Indeed, if an phase observable had existed, one 
could have defined a time operator via the advance in the phase of the oscillator. This, in 
turn, would effectively make the time a random variable (rather than a parameter) thus 
depriving the standard quantum-mechanical theory of its smooth, monotonically 
increasing evolution parameter needed to formulate the Schrödinger equation and leading 
to grave difficulties. On the whole, one is left in the unenviable position of having a 
classical observable (the phase) without a satisfactory quantum counterpart. Apparently, 
the phase of the oscillator is an essentially classical notion and it can be assigned to a 
quantum state only if the position and momentum expectation values are localized within 
intervals δx and δp such that the box δx ⋅ δp subtends a small angle at the origin of the  
x - p plane.  

Now we turn our attention to the recent important theoretical work of Pegg and 
Barnett [3-6] concerning the phase operator of harmonic oscillator. They introduced a 
mathematical model of the single-mode electromagnetic field which involves a finite but 
arbitrary large state space. The dimensionality of this space, N + 1, is allowed to tend to 
infinity only after calculation of expectation values is made. The finiteness of the state 
space means that the operators involved may have different properties than those of their 
infinite space counterparts. The distinctive feature of their model lies in the fact that the 
form of the phase states  
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is, in fact, postulated, and then the Hermitian phase operator is introduced as the operator 
which has eigenstates that are these phase states. The existence and form of the Pegg-
Barnett Hermitian phase operator follow directly and uniquely from these phase states. 
Conventionally, one would expect the reverse. In fact, if one were to take the infinite-N 
limit of the phase states (4.1), which is explicitely not done in the Pegg-Barnett 
formalism, this limit would be the simultaneous eigenstates of the Susskind-Glogower 
Hermitian sine and cosine operators [1, 17-18]. As these two operators do not commute 
their use has been regarded as an unsatisfactory solution. 

It is apparent that the phase states (4.1), used in the Pegg-Barnett model, are closely 
related to the phase states (3.1). Indeed, the use of the approximate fn(ϕ), Eq.(3.7), 
together with truncation of the Hilbert space and entailed use of equidistant discrete 
values of the angle variable, in order to obtain complete (but not overcomplete) and 
mutually orthogonal set of states, lead from (3.1) and (3.7) directly to the states (4.1). 
Under these assumptions the Pegg-Barnett Hermitian theory, together with its 
predictions, is recovered from the present approach. The enumerated approximations 
allow one to find a well behaved Hermitian phase operator. Indeed, one reads in [6] that 
“this result contradicts the well established belief that no such operator can be 
constructed”. Having in mind the results of Sect.3, it is apparent that the Pegg-Barnett 
model represents a nontrivial departure from the principles of the orthodox quantum 
mechanics. If corroborated by the experiment, the model would require modification of 
the standard quantum mechanical approach, namely substitution of an infinite state space 
of the harmonic oscillator by the one of finite but arbitrarily large dimensions, since only 
the latter approach leads to the well behaved Hermitian phase operator. ( The 
impossibility of distinguishing, by physical experiments, the difference between the two 
state spaces was discussed by Böhm [19] ). Perhaps it is worth emphasizing once again 
that the Pegg-Barnett model depends critically on the exactness of the adopted phase 
states (4.1), and these have a contribution from the states with small quantum number 
which is different from that for the states of this paper. This would be important in the 
case of fields with very small mean photon numbers, where non-classical effects might 
be expected to be observable. 
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OPERATOR FAZE HARMONIJSKOG OSCILATORA 

I. Mendaš 

Konstruisani su kvantnomehanički operator koji odgovara tangensu klasične faze 
harmonijskog oscilatora kao i odgovarajuća fazna stanja. Razmotrene su osobine ovih stanja i 
njihova veza sa Peg-Barnetovom teorijom za hermitski operator faze. 

Ključne reči: kvantni harmonijski oscilator, operator faze 


