REDUCTION OF AN INFINITE-DIMENSIONAL HAMILTONIAN SYSTEM IN CLASSICAL AND QUANTUM MECHANICS

UDC: 530.1

N. Burić

Department of Physics and Mathematics, Faculty of Pharmacy
Vojvode Stepe450, 11000 Beograd, Yugoslavia
e-mail: majab@rudjer.ff.bg.ac.yu

Abstract We show that classical or quantum mechanics can both be obtained from an infinite-dimensional Hamiltonian system. The procedure consists in postulating mathematical representatives of the physical observables and performing a reduction of the Hamiltonian system ($H, \Omega, \Phi$) by the corresponding phase groups as symmetry groups.

Key words: infinite Hamiltonian systems, symmetry, reduction

1. INTRODUCTION

The mathematical frameworks of classical and quantum mechanics are quite different. The first one is usually formulated using Hamiltonian dynamical systems on finite-dimensional manifolds [1], and the second uses unitary linear dynamical systems on infinit-dimensional Hilbert spaces [2]. This makes a comparison between the two theories more difficult. However, it is known that the classical statistical mechanics is related to unitary evolution operators on suitable Hilbert [3], [1], and that, on the other hand, the linear Schrodinger equation can be looked upon as a Hamiltonian dynamical system on an infinite symplectic manifold [4], [5]. The Liouville equation of classical statistical mechanics and the common Schrodinger equation are actually examples of infinite-dimensional linear Hamiltonian systems. Reversing these relations, it would be interesting to establish the precise procedures which would, starting from an abstract infinite-dimensional Hamiltonian system, give as the result the mathematical framework of classical or quantum mechanics.

In this paper we shall show that classical and quantum mechanics can be obtained

Received October 1, 1997; in revised form November 14, 1997; accepted November 18, 1997
from such Hamiltonian system by reduction using their respective phase-symmetry groups. Our main result is the following: An abstract infinite-dimensional linear Hamiltonian system which is invariant under groups $G_c$ or $G_q$ is actually equivalent to a classical mechanical system or to a quantum system respectively. The classical symmetry group $G_c$ is the local version of the symmetry group in the quantum case $G_q$, and both groups will be explicitly formulated in section 3. The fact that the mathematical framework of quantum mechanics can be obtained from an infinite-dimensional Hamiltonian system by the reduction by the group $G_q$ comes from an application of a well known result [4]. As far as we know, the other, more difficult, part of our result, that is, that classical mechanics also comes from an infinite-dimensional Hamiltonian system by the reduction by the phase-symmetry group $G_c$ is original.

The paper is organised as follows. In the section 2. we recapitulate the standard way of representing an abstract linear Schrödinger equation as an infinite-dimensional Hamiltonian system. We also summarise the procedure due to Marsden and Weinstein [6] known as the reduction of a Hamiltonian system by a symmetry group. In section 3. we prove our main result. We first recapitulate the Koopman formalism of classical statistical mechanics, where the Liouville equation appears as a linear Schrödinger equation on an infinite-dimensional Hilbert space. This also motivates our choice for the phase group of classical mechanics. We then suppose that an abstract linear infinite-dimensional Hamiltonian system is symmetric under either of the groups $G_c$ or $G_q$, and then perform the corresponding reductions. As the results we obtain the standard mathematical formulations of classical mechanics, in the case of $G_c$, or quantum mechanics in the case of $G_q$. In the section 4. we briefly summarise our results and indicate their possible applications.

2. SCHRODINGER EQUATION AS A HAMILTONIAN DYNAMICAL SYSTEM

Firstly we consider an abstract linear Schrödinger equation, independently of its physical interpretation, and associate with it an infinite-dimensional Hamiltonian system. Let $H$ be a complex separable Hilbert space, and $\hat{H}$ a self-adjoint operator with some domain $D_{\hat{H}} \subset H$. The following equation:

$$\frac{1}{i} \frac{d\psi}{dt} = \hat{H}\psi, \quad \psi \in D_{\hat{H}}, \quad (h = 1)$$

is called linear Schrödinger equation, and has the following solution, given by a one parameter family of unitary operators $\hat{U}(t)$ on $H$:

$$\psi(t) = \hat{U}(t)\psi(0)$$

where:

$$\hat{U}(t) = \exp(-it\hat{H}).$$

As is well known [4] the equation (1) can be looked upon as a Hamiltonian dynamical system $(H, \Omega, \Phi_t)$ on an infinite-dimensional manifold. The phase space of this system is the space $H$ with the standard symplectic structure, given by the imaginary part of the
Reduction of an Infinite-dimensional Hamiltonian System in Classical and Quantum Mechanics

The scalar product:

\[ \Omega(\psi, \phi) = -i \mu <\psi|\phi>, \quad \psi, \phi \in \mathcal{H} \cong H \times H \]

(4)

The operator \( \hat{H} \) defines the corresponding vector field \( X_{\hat{H}} \) via:

\[ X_{\hat{H}}\psi = i\hat{H}\psi \]

(5)

which is a Hamiltonian vector field with respect to the symplectic structure \( \Omega \). Thus, there is a function \( H(\psi) \) on the phase space \( \mathcal{H} \) given by:

\[ H(\psi) = \frac{1}{2} <\psi|\hat{H}|\psi> \]

(6)

such that: \( \Omega(X_{\hat{H}} \cdot) = dH \).

Let us now briefly sketch a procedure for reducing the dimension of the phase space by using the symmetry of the Hamiltonian system. The general form of the procedure is due to Marsden and Weinstein [6]. MW reductions in the two cases which are relevant for us are discussed in the next section.

Let \( G \) be a group acting by symplectic diffeomorphisms on a symplectic manifold \( M \). If \( G \) is a symmetry group of a Hamiltonian system on \( M \) then the generators of the group give functions \( f \) on \( M \) which are first integrals of the Hamiltonian system. They are not necessarily in involution since the group need not be abelian. Common level sets of these functions \( M_f \) are invariant submanifolds of \( M \) for the Hamiltonian flow. Denote by \( G_f \) a subgroup of \( G \) which leaves \( M_f \) invariant and thus is acting on \( M_f \). A factor manifold \( M_f \equiv M_f / G_f \) is the set of orbits of the subgroup \( G_f \) on \( M_f \). It is often a symplectic manifold, and the Hamiltonian system on \( M \) gives a Hamiltonian system on \( M_f \). The manifold \( M_f \) is called the reduced phase-space and the Hamiltonian system on \( M_f \) is called the reduced system (of the original system with respect to the symmetry group \( G \)). As a common example consider the one-parameter group given by the flow \( G \equiv F_t \) of the Hamiltonian \( h \). Level sets of the Hamiltonian \( M_h \) are \( 2N-1 \) dimensional manifold invariant under the flow \( F_t \). The set of orbits \( M_f / F_t \) is a \( 2N-2 \) symplectic manifold. It is the reduced phase-space in this case.

3. REDUCTIONS BY THE PHASE-SYMMETRY GROUPS

OF CLASSICAL AND QUANTUM MECHANICS

We shall now outline the MW reductions of the system \((H, \Omega, \Phi)\) corresponding to the phase groups of classical and quantum mechanics \( G_c \) and \( G_q \). First we shall consider the classical case. We shall introduce and discuss the group \( G_c \) and then perform the corresponding reduction. We shall then repeat the analysis in the quantum case.

**Classical Mechanics**

The classical mechanics is obtained if the observables are taken to be represented by the operators of multiplication by real functions acting on the Hilbert space \( \mathcal{H} = L^2(\mathcal{P}) \), where \( \mathcal{P} \) is finite-dimensional symplectic manifold. An operator \( \hat{A} \) on \( L^2(\mathcal{P}) \), satisfies the invariance condition:

\[ \hat{A} = \exp(i\lambda)\hat{A}\exp(-i\lambda) = \hat{A}, \quad \lambda : \mathcal{P} \to \mathbb{R} \]

(7)
if $\tilde{A}$ is a multiplication by some function $a(x)$ on $P$: $(\tilde{A}\psi)(x) = a(x)\psi(x)$.

Thus the phase group of classical mechanics is:

$$G_c = \{ \exp(i\lambda/\lambda : P \to \mathbb{R} \}.$$  

(8)

The self-adjoint operators which commute with the action of this group on $(H, \Omega, \Phi)$, that is the multiplications by real functions on $P$, are the physical observables of the classical mechanics.

Vectors of the Hilbert space $L_{2\mathbb{C}}(P)$ do not have direct physical interpretation, but the following expression:

$$\langle \psi | f | \psi \rangle = \int_P \psi^* f \psi \, d\mu,$$

(9)

which is invariant under the action of the phase group $G_c$, is interpreted as the mean value of the observable $f$ in the statistical ensemble described by the distribution $\rho = |\psi|^2$. Thus, the definition of physical observables introduces an equivalence relation on $H = L_{2\mathbb{C}}(P, \mu)$:

$$\psi \sim \psi' \iff |\psi|^2 = |\psi'|^2.$$  

(10)

Consider now the MW reduction of the system $(H, \Omega, \Phi)$ by the symmetry group $G_c$, which, as we shall show, results in a finite-dimensional Hamiltonian system $(P, \omega, F_t)$. Since $G_c = \{ \exp(i\alpha) : P \to \mathbb{R} \}$, where $P$ is $2N$ dimensional real manifold, the algebra of $G_c$ is: $G_c = \{ \alpha \circ P \to \mathbb{R} \}$, the abelian algebra of real functions on $P$. The symplectic action of the group $G_c$ on $H = L_{2\mathbb{C}}(P, \mu)$ is given by: $\exp(i\alpha): \psi \mapsto \exp(i\alpha)\psi$. The Hamiltonian $H_{\alpha}: H \to \mathbb{R}$ corresponding to an element $\alpha \in G_c$ is given by:

$$H_{\alpha}(\psi) = \frac{1}{2} \langle \psi | (\tilde{\alpha}) \psi \rangle = \frac{1}{2} \int_P \alpha(x) |\psi(x)|^2 \, d\mu(x),$$  

(11)

where the operator $\tilde{\alpha}$ is given by:

$$(\tilde{\alpha}\psi)(x) = \alpha(x)\psi(x).$$  

(12)

The group $G_c$ is abelian so that the reduction procedure gives as the reduced manifold the set of equivalence classes:

$$H_r = L_{2\mathbb{C}}(P, \mu)/\sim,$$

(13)

where $\sim$ is the equivalence relation given by $\psi \sim \phi$ iff $|\psi|^2 = |\phi|^2$. The algebra of real functions on the set of equivalence classes $H_r$ is identical with the algebra of real functions on $P$, where the identification is given by the following rule:

$$F_f(\tilde{\psi}) = \int_P f |\psi|^2 \, d\mu, \quad \psi \in H, \tilde{\psi} \in H_r.$$  

(14)

Finally because of duality between the algebra of real functions on $P$ and the manifold $P$ itself we can identify $H_r$ with $P$.

The symplectic structure and the Hamiltonian on $P$ follow from those on $H$, using the equation (2) as the definition of the Hamiltonian flow $F_t$ on $P$.

Quantum mechanics

Let us now turn onto the MW reduction which gives the quantum mechanics. All
objects in the Hilbert space formulation of quantum mechanics are invariant under the global $S_1$ group of transformations, the circle group. Physical observables are represented by self-adjoint operators on the complex Hilbert space and the states are represented by projection operators i.e. by unit rays in the Hilbert space. Thus the phase group of quantum mechanics is the circle group $S^1$:

$$G_q = \{ \exp i\alpha | \alpha \in R \},$$

and is much smaller than the phase group of classical mechanics. The phase group $G_c$ can be obtained from $G_q$ if the real constants $\alpha$ are replaced by real functions on a finitely dimensional manifold. We shall not consider larger groups corresponding to additional kinematical symmetries, which might also involve some superselection rules.

The group $S^1$ acts symplectically on $H$ by:

$$\psi \rightarrow \exp(i\alpha)\psi.$$

$S^1$ is a one-parameter group with the generator given by some real constant, let say unity. The Hamiltonian of the action is given by:

$$H_1(\psi) = \frac{1}{2} <\psi | \psi >,$$

so that the level set of $H_1$ is the unit sphere:

$$H_1^{-1}(\psi) = \{ \psi : ||\psi|| = 1 \}.$$

The reduced phase space is:

$$H_r = H_1^{-1}(\psi) / S^1 = P(H),$$

the projective Hilbert space.

MW reduction of the infinite-dimensional Hamiltonian system $(H, \Omega, \Phi_t)$ by the group $G_q$ as the symmetry group results in another infinite-dimensional Hamiltonian system $(P(H), \Omega, \Phi_t)$ . The latter is defined on a projective space $P(H)$ as the symplectic manifold. However the sole functions on $P(H)$ which are physically interpreted are quadratic functions of the local symplectic coordinates. Let us briefly describe the Hamiltonian system $(P(H), \Omega, \Phi_t)$.

The standard symplectic structure on $P(H)$ follows from that on the original $H$ and the reduction procedure. A state $s_0 \in P(H)$ is represented by a fixed $|s_0\rangle \in H$. Open neighbourhoods of the point $s_0$ are sets of $s$ such that $<s_0 | s> \neq 0$. We can write:

$$|s> = \lambda |s_0> + |p>,$$

where $s_0 | p > = 0$, and $\text{Im}\lambda^0 = 0$, $\lambda^0 > 0$. Let $\{|s_0>\}$ be a bases in $\perp_{s_0} H$, where $\perp_{s_0} H$ denotes the ortocomplement of $|s_0\rangle$ in $H$. Then the real and the imaginary parts of the expansion coefficients $\lambda_k$ in $|p> = \Sigma_k \lambda_k |s_k> > 0$, and $\text{Im}\lambda^0 = 0$, $\lambda^0 > 0$. Let $\{|s_k>\}$ be a bases in $\perp_{s_0} H$, where $\perp_{s_0} H$ denotes the ortocomplement of $|s_0\rangle$ in $H$. Then the real and the imaginary parts of the expansion coefficients $\lambda_k$ in $|p> = \Sigma_k \lambda_k |s_k> > 0$. Let $\{|s_k>\}$ be a bases in $\perp_{s_0} H$, where $\perp_{s_0} H$ denotes the ortocomplement of $|s_0\rangle$ in $H$. Then the real and the imaginary parts of the expansion coefficients $\lambda_k$ in $|p> = \Sigma_k \lambda_k |s_k>$ are the real local coordinates in the neighbourhood of $s_0$. Thus $P(H)$ has the structure of a smooth manifold. The tangent space to $P(H)$ at $s_0$: $c(H)$ can be identified with $\perp_{s_0} H$. Indeed, for every $v \in T_{s_0}P(H)$ such that $s = s_0 + \delta s / \delta v$ there is the corresponding $|v> \in \perp_{s_0} H$ such that $|s> = |s_0> + \delta |v>$, where $|s>$ is the vector corresponding to $s$. The vector $|v>$ is fixed by $v$ up to the common phase factor, i. e. modulo the phase group $G_q$. Finally the symplectic structure on $P(H)$ is well defined by:

$$\Omega_1(v_1, v_2) = -2 \text{Im} <v_1 | v_2 >, \quad v_1, v_2 \in T_s P(H).$$

The local real coordinates $(\text{Re}\lambda_k, \text{Im}\lambda_k)$ are the symplectic coordinates with respect to this symplectic structure. The flow $\Phi_t = \tilde{U}(t)$ on $H$ gives after the reduction by $G_q$ the
Hamiltonian flow on $P(H)$.

4. CONCLUSIONS

The main result of our analyses can be summarised as follows: Reductions by

$$G_c = \{ \exp i \lambda : \lambda : \mathbb{P} \to \mathbb{R} \}$$

or

$$G_q = \{ \exp i \alpha : \alpha \in \mathbb{R} \}$$

of a linear infinite-dimensional Hamiltonian system gives as the result the mathematical frameworks of classical or quantum mechanics, respectively. Thus, both classical or quantum evolution can be studied using the same infinite-dimensional Hamiltonian system, and the results can be specified to the classical or the quantum case by the reduction by the corresponding phase-symmetry groups.

We believe that our result helps to understand better the relation between classical and quantum dynamical systems. This result could be useful for example in analysing problems related to coupled quantum and classical systems [7], transition to classical limits of quantum systems [8] and the problem of quantum integrability [9], [10].

REFERENCES


REDUKCIJA BESKOĐAČNO-DIMENZIONOG
HAMILTONOVOG SISTEMA
U KLASIČNOJ I KVANTNOJ MEHANIČI

N. Burić

Pokazano je da se klasična i kvantna mehanika mogu dobiti redukcijom istog beskonačno-dimenzionalnog Hamiltonovog sistema. Procedura se sastoji u postuliranju matematičkih reprenzenata fizičkih veličina i u redukciji Hamiltonovog sistema $(\mathcal{H}, \Omega, \Psi)$ pomoću odgovarajuće fazne grupe kao grupe simetrije.