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Abstract. In construction of complex robotic and related mechanisms, lightweight 
materials are often used and they are characterized by flexibility segments. To achieve 
precise and rapid control of motion of such a mechanism, it is necessary to synthesize 
their high fidelity model. This would be of great importance for its analysis and 
synthesis. The work in this paper starts from the first research in this area, and it 
includes the original form of the Euler-Bernoulli equation and its solution, which, 
compared with current knowledge, imposes the need for the expansion of the same 
equation from multiple points of view. The new form of the Euler-Bernoulli equation 
and its solution are based on current knowledge in robotics, as well as the knowledge 
of classical mechanics. This is the only way of how to fully preserve the information of 
the complexity of the kinematics and dynamics of elastic mechanisms. 
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NOMENCLATURE 

DOF degree of freedom 
][st  time 

 xi,j , yi,j , zi,j 
local coordinate frame, which is set in the base of considered 
mode 

 xj , yj , zj  
local coordinate frame, which is set in the base of the 
considered link 

 Ts zyxk   Cartesian (external) coordinates 

 x , y , z 
basic coordinate frame, which is set in the root of the 
considered robotic system 

inj ,...,3,2,1  serial number of the mode of considered link  
mi ,...,3,2,1  ordinal number of the link 
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][1
, NmRji   bending moment for the mode tip 

T
n ][

1,11,1 ....1    vector of bending moments dynamics 

ji,#̂  
quantities that are related to an arbitrary point of the elastic 

line of the mode, for example: jijix ,,
ˆ,ˆ   

ji,#  
quantities that are not designated by “^” are defined for the 
mode tip, for example: xi,j, i,j 

j quantities which characterize link 

][1 radRj   rotation angle of the motor shaft after the reducer 

][1
, radRji   bending angle of the considered mode 

][1
, radRji   rotation angle of the considered mode tip  

][ 21
, NmRji   flexural rigidity 

][1
, sRji   

factor which characterizes part of damping in whole flexural 
characteristics  

11
1

ˆ
nxn

RH   matrix characterizing the inertia of the each mode 

1

1
1ˆ
xn

Rh   
vector characterizing the effect of centrifugal, gravitational 
and Coriolis forces of each mode 

][][16 NmorNRF x
uk   external contact force 

6

1

1
x

T

e

n
Rj   

the Jacobian matrix serving to map the impact of the 
dynamic force of contact Fuk on the behavior of each mode  

][1
, mRT jsti   

stationary part of flexible deformation caused by stationary 
moments that vary continuously over time 

][1
, mRT jtoi   oscillatory part of flexible deformation 

][Vu j  voltage 
][Ai j  rotor current 

)]//([ sradVCEj  proportionality constants of the electromotive force 

]/[ ANmCMj  proportionality constants of the moment 

)]//([ sradNmBuj   coefficient of viscous friction 

][ 2kgmI j  inertia moments of the rotor and reducer 

jS  expression defining the reducer geometry 

11
1

nxn

Rz   
matrix characterizes the mutual effect of elasticity forces of 
the presented modes on the observed mode 

l inear velocity  (m/s)
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1. INTRODUCTION  

Elasticity of withy, long spread links constructed of light materials, requires an elas-
ticity analysis. When the introduction of link flexibility in the mathematical model is con-
cerned, it is necessary to point out some essential problems in this domain. 

With the aim to exploit the experience of previous research, Meirovitch theory was 
first analyzed [1]. Meirovitch proposed a “modal technique” more than 40 years ago, 
exactly in 1967. The author elaborated a particular application of the Euler-Bernoulli 
equation supposing that elastic deformation was a quantity defined in advance with re-
spect to amplitude and frequency and, formed in this way, it was included into a dynam-
ics model. Not finding any other solutions, many researchers in robotics [2-10], applied 
the solution [1] in the description of the real dynamics of the robot system elastic defor-
mations, or they used many ways to modify the solutions from the [1]. 

Having not found agreement with Meirovitch and his followers, the definition of 
elastic deformation was made taking into account the first research studies, i.e. the origi-
nal form of the Euler-Bernoulli equation. 

The Euler-Bernoulli equation was written in 1750. It was written by Bernoulli, a 
physicist and Euler, a mathematician, his long time friend and colleague. They did not 
even dream about the robotics and the knowledge we have now on disposal. But, al-
though it was made more than 250 years ago, Euler-Bernoulli equation is still usable and 
it can be connected logically with the contemporary knowledge from the robotics. 

In this paper, the Euler-Bernoulli equation is formed but the “assumed modes tech-
nique” is not used, in contrast to contemporaries who deal with this issue as well. That 
means that the elastic deformation amplitude and its frequency change depending on the 
moments (perturbation, inertial moments, Coriolis, centrifugal moments, gravity moments 
as well as coupling moments between the present modes, and the play of the external 
forces). It, of course, depends on the mechanism configuration, weight, length of the seg-
ments of the reference trajectory choice, dynamic characteristics of the motor motions etc. 

This has been elaborated in detail in the work, but it is not the only essential problem 
existing in the pertinent literature. 

In the previous papers [2-10], the general solution of the motion of an elastic robotic 
system has been obtained by considering flexural deformations as transversal oscillations 
that can be determined by the method of particular integrals of Bernoulli. 

It is taken into consideration that any elastic deformation can be presented by 
superimposing Bernoulli’s particular solutions of the oscillatory character and stationary 
solution of the forced character. See papers [11-16]. 

The motion equation at any point of considered mode as defined in papers [17] and [18] 
follows directly from the Euler-Bernoulli equation for the preset boundary conditions. 

Nowadays, taking into consideration significantly improved knowledge in the robot-
ics (classical mechanics); the Euler-Bernoulli equation can not be used anymore in its 
original form, as a purpose of synthesis and analysis of elastic robotic systems. Therefore, 
with respect to Euler and Bernoulli, it is necessary to further improve the equation. It is 
the only way for not losing information of complexity of motion dynamics of every mode 
within a segment (and broader within the total robotic configuration). Thus, it is very 
important to connect the original Euler-Bernoulli equation and modern robotic knowl-
edge on the principles of classical mechanics. The foundations of classical mechanics are 
particularly emphasized because synthesis and analysis of kinematics and dynamics of 
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robotic configurations in stiff and elastic elements are based on them. The elasticity of 
segments on the principles of classical mechanics is implemented in this paper. 

This research has theoretical and practical significance. The purpose is to define as 
realistically as possible both kinematic and dynamic model of the mechanism with stiff 
and elastic elements which will describe the real system very well. 

In the papers [13] and [14] the general form of the mathematical model of the robotic 
system with elastic segments (the Euler-Bernoulli equation) is given for the first time. 

The future work should be directed to the implementation of the flexibility of links on 
any model of a rigid robot and also on the model of a reconfigurable rigid robot as given 
in [19] or any other type of mechanism. The mechanism would be modeled to contain 
elastic elements and to generate vibrations, which are used for conveying particulate and 
granular materials in [20]. 

Section 2 analyses the source form of the Euler-Bernoulli equation and its solution. 
The Euler-Bernoulli equation and its solution is extended and explained in several aspects 
in Section 3. Section 4 gives some concluding remarks. 

2. THE SOURCE FORM OF THE EULER-BERNOULLI EQUATION 

Any elastic body, when exposed to external forces, is deformed - it elongates, short-
ens, bends, twists, depending on the position and direction of forces acting on it. Only 
transversal deformations of the prismatic beam will be analyzed in detail in this paper. 
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Fig. 1 Idealized motion of elastic body according to D. Bernoulli 

When disturbance of the equilibrium state of an elastic body occurs, it causes motion, 
i.e. vibration of particles. The motion propagates through the body as a wave process 
whose characteristic is that in every place of the elastic medium exists the same disturbed 
state prevails in each place of the flexible medium, but with a delayed phase. 

The Euler-Bernoulli equation of beam bending is of the following form: 
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Fig. 2 Possible positions of the tip of elastic line with 1n modes, simplified for 01   

Where ][)ˆ(
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1,11,12
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1,11,1 Nmxx
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yd
mM el   is the load moment, in these source 

equations encompassing only inertia, ][
ˆ
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1,1
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x

y




  is bending moment. 

][ 2
1,11,1 NmIE moml   is the flexural rigidity. 

Equation (1) is defined under the assumption that the bending moment is opposed 
only by the proper inertial moment. 

The solution of the Euler-Bernoulli equation original form (1) can be analyzed. A 
general solution of motion, i.e. the form of transversal oscillations of flexible beams can 
be found in the method of particular integrals of Bernoulli, that is: 

 )(ˆ)ˆ(ˆ),ˆ(ˆ 1,11,11,11,11,1
tTxXtxy toto

  (2) 
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Besides, it is supposed that according to the definition, the motion in (1) is caused by 
an external force F1,1, added and then removed with the solution (2) of Bernoulli and it 
satisfies these assumptions. 

By superimposing the particular solutions (2), any transversal oscillation can be 
presented in the following form: 

 )(ˆ)ˆ(ˆ),ˆ(ˆ
1

,1,1,1,11
tTxXtxy

j
jtojjjto

 



 (3) 

Equations (1-3) need a short explanation. The authors wrote equation (3) based on 
“vision”, as they did not define mathematical model of a link with infinite number of 
modes, whose solution is equation (3). They left this task to their successors. Transversal 
oscillations defined by equation (3) describe the motion of elastic beam to which we 
assigned an infinite number of DOFs (modes), see Fig. 2, and which can be described by 
a mathematical model composed of an infinite number of equations, in the form:

  

  ...,...,,2,1,0ˆˆ
,1,1 jjM jj   (4) 

Dynamics of each mode is described by one equation. The equations in the model (4) 
are not of equal structure as our contemporaries, authors of numerous works presently 
interpret it. We think that the coupling between the modes involved leads to structural 
diversity among the equations in the model (4). 

3. THE NEW FORM OF THE EULER-BERNOULLI EQUATION 

The point of application of forces displace in time, so these forces perform certain 
work on this path. Work is opposed by: 

* the potential energy of the elastic body, which depends on the stiffness characteristic and 
flexure, and 

* the dissipation energy of the elastic body, which depends on the damping characteristic 
and flexure change velocity. 

The presence of dissipation energy is especially expressed in an oscillatory regime, while 
its presence is minimal in a stationary regime, when displacement velocity of the material 
particles of an elastic body with respect to an equilibrium position is minimal. To include the 
damping effect into analysis, source equation (1) should be extended as follows: 
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1,1 is a factor characterizing the share of damping in the total elasticity characteristic. 

The Bernoulli solution (1-4) describes only partially the nature of motion of real 
elastic beams. More precisely, it is only one component of motion. The original equations 
(1-4) should be expanded in order to be applicable in a broader analysis of elasticity. By 
supplementing these equations with the expressions that come out directly from the 
motion dynamics of elastic bodies, they become more complex. 
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The motion of the considered robotic system (or link with infinite number of modes 
presented in Fig. 2 is far more complex than the motion of the body presented in Fig. 1. 
This means that the equations that describe the robotic system (its elements) must also be 
more complex than the equations (1-4), formulated by Euler and Bernoulli. This fact is 
overlooked, and the original equations are widely used in the literature to describe the 
robotic system motion. This is far inadequate because valuable pieces of information 
about the complexity of the elastic robotic system motion are thus lost. Hence, it should 
be especially emphasized the necessity of expanding the source equations for the purpose 
of modeling robotic systems, and this should be done in the following way: 

* based on the known laws of dynamics, equation (1) is to be supplemented by all the 
forces that participate in the formation of the bending moment of the considered mode. 

* to define the form of elastic line of the considered robotic system it is necessary to 
expand the previously known solutions (3). Supplement it by adding stationary solution 
to the particular solution of D. Bernoulli, which is of oscillatory character. This means 
that the given solution depends directly on the overall system dynamics. As the link 
elastic line does not usually conform to the direction of the preset axes but extends in the 
space, we cannot define it by only one equation. General form of the elastic line is a 
direct outcome of the dynamics of system motion and cannot be represented by one 
equation but three equations are needed to define position and three equations to define 
orientation of each point on the elastic line. The equation of elastic line of the robotic 
system should also encompass the angles of motor shaft rotation i  and the robot 
configuration. 

The load moment is composed of all moment acting on the first mode of the link and 
these are perturbation moments, inertial moments (single and coupled moments), 
centrifugal, gravitational, Coriolis moments (single and coupled), coupled bending 
moments of the other modes, as well as the external force (which can be defined as static 
or dynamic force), which is via Jacobian matrix transferred to the motion of the first 
mode that come out directly from the motion dynamics of elastic bodies. They become 
more complex. This means that all these forces participate in generating of bending 
moment i.e. in forming elastic deformation as well as of the elasticity line of the first 
mode. In that case the model of elastic line of the first mode of the elastic link has the 
form of the Euler-Bernoulli equation: 
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The elastic line model of the first link that has 1n  modes is given in a matrix form by 
the following Euler-Bernoulli equation: 

 0ˆˆˆ
ˆ

1111
,1

1 12

2

 zFjh
dt

yd
H uk

j T

e
 (7) 

Researchers are especially interested in the motion of the first mode tip. 
The motion equation of the forces involved at any point of the elastic line of first 

mode, including the point of the first mode tip, can be defined from the Euler-Bernoulli 
equation (6). The motion equation of all forces at the first mode tip for the given 
boundary conditions can be defined by the following equation: 
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Equation (8) is interesting because it allows one to calculate the position of the first 
mode tip. If we know the position of each mode tip we can always calculate the position 
of the link tip too and eventually the position of the robot tip. 

Vector motion equation of all the forces at the tip of each mode of the first link can be 
defined from equation (7) for the preset boundary conditions: 
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This equation should be supplemented by the mathematical model of motor written in 
following form: 
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Let us define it by setting for each motor the motion equation of all the moments 
acting about the rotation axis of the given motor. It has the form of the mathematical 
model of the motor of a rigid robotic system, but the difference being in that the moment 
of the i-th motor is not opposed by the mechanism moment (as with rigid robotic 
systems). The motor moment is opposed by the bending moment of the first elastic mode 
that comes after the motor, and also in part, by the bending moments of the other elastic 
modes that are connected in series after the given motor. All the modes after the motor, 
due to their position, influence the dynamics of motor motion. The overall order of the 
system (7) and (10) is (n1+1). 

Hence, it should be especially emphasized the necessity of expanding the source 
solution (3) with the stationary character of the elastic deformation caused by the forces 
involved. 

By superposing the particular solution of oscillatory nature, and the stationary solution 
of forced nature, any flexible deformation of a considered mode may be presented in the 
following general form: 

 ))(ˆ)(ˆ()ˆ(ˆˆ 1,11,11,11,11,1 tTtTxXy tost   (11) 

1,1
ˆ
stT  is the stationary part of flexible deformation caused by stationary forces that 

vary continuously over time. 1,1
ˆ
toT  is the oscillatory part of flexible deformation as in (2). 
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Component )ˆ(ˆ
1,11,1 xX  describes a possible geometrical relation between 1,1ŷ  and 1,1x̂ . 

Component 
1,11,1

ˆˆ
tost TT   describes the dependence of flexure 1,1ŷ  on flexibility force, which is 

the only time-varying quantity in expression (11). By superposing solutions (11), any flexible 
deformations of a flexible link with an infinite number of degrees of freedom may be 
presented in the following form: 

 ))(ˆ)(ˆ()ˆ(ˆ),(),ˆ(ˆ
1

,1,1,1,111,11 tTtTxXtRtxy
j
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
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The equation of Bernoulli (12) (see Fig. 2) defines a geometrical position of any spot 
on the elastic body line 1ŷ in direction y1 - axis, and in a direction of x1 - axis it would be 
a 1x̂  coordinate which is also a geometrical size and it can be presented in an analogue 
way as well as the size 1ŷ . 

 ))(ˆ)(ˆ()ˆ(ˆ),(),ˆ(ˆ
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,1,1,1,111,11 tTtTyYtNtyx
j

jtojstjjj  



  (13) 

Any form of elastic line and the pertinent transversal oscillations, as well as the motor 
motion, can be presented by equations (12) and (13). To this equation one should add 
also the equation defining the orientation of each point on the elastic line of the link. 

 ))(ˆ)(ˆ()ˆ,ˆ(),(),ˆ,ˆ(ˆ
1

,1,1,1,1,111,1,11 tTtTyxtKtyx
j

jtojstjjjjj  
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  (14) 

The position and orientation of a tip of a presented body with indefinite number of 
modes is defined by coordinates x1, y1 and 1 in x1, y1 level. It is supposed that all 
motions are made in x1  y1 level, and a coordinate is z1 = 0 in this case. Equations (12-
14) are actually the solution of dynamics of the presented body’s motion during the time. 
However, in order to calculate the coordinates 1x̂  , 1ŷ , 1̂  in some specific moment of 
time (as is seen from Fig. 2) , it is necessary (except from angles 1,1 , 1,2 , 1,3 , ... 1,j) 
to know sizes of elastic deformations of all modes y1,1 , y1,2 , y1,3 , ... y1,j and x1,1 , x1,2 , x1,3, 
... x1,j defined in a space of local coordination system xi,j , yi,j , zi,j. Generally, coordinates 

1x̂ , 1ŷ and 1̂  are the total of elastic deformations, but precisely, in geometrical terms, 
1x̂  and 1ŷ are the total of projected elastic deformations on axes x1, y1 respectively. 

Equation (3) has significance as elastic deformation for each mode for Meirovitch [1] 
and his followers [2-10], and in this way defined is entered in the total dynamic model. 

The elastic deformation cannot be defined in advance (with both amplitude and 
frequency) and put in the system but completely inversely. The elastic deformation is a 
dynamic value which depends on the total dynamics of the robot system motions. 

With new knowledge collected through generations, the intensive development of the 
new technical areas such as robotics especially strengthen by the development of the data 
computing process, demanded and enabled that elastic deformation was considered really 
as the dynamic value which depended on the system parameters. The elastic deformation 
is a dynamic value by both amplitude and frequency and it is the result of the total system 
motion’s i.e. outer and inner, dynamic and static forces. Such elastic deformation should 
exist in the dynamics of the robot system motions. The synthesis of the robot system 
dynamics should be processed on the basis of the completely new different principles 
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comparing to [1], with models based on the known, classic dynamics, the elasticity theory 
and the oscillation theory, where the elastic deformations are described as dynamic values 
of the inner and outer load which influence the total dynamics of the robot system 
motions. 

That means that the elastic deformation amplitude and its frequency change 
depending on the forces (inertial forces, Coriolis, centrifugal forces, gravity forces as well 
as coupling forces between the present modes, and the play of the environment forces). It, 
of course, depends on the mechanism configuration, weight, length of the segments of the 
reference trajectory choice, dynamic characteristics of the motor motions etc. 

In this paper, as explained above, equations (12-14) have completely new meaning. 
Equations (12-14) are solution of dynamic models (7) and (10), i.e. form of link elastic 
lines in space of Cartesian coordinates. It should be pointed out that the form of elastic 
line comes out directly from the dynamics of the system motion. 

The robot motion is based on motor rotating angles, elastic deformation values and all 
other kinematics and dynamic robot mechanism characteristics (such as its geometry, 
configuration, weight disposal, motor characteristics, reference trajectory choice, as well 
as, many other important characteristics that influence the robot system motion 
dynamics). In robotics, this procedure is called the solution of “direct kinematics”. 

4. CONCLUSIONS 

The paper describes the methods of expanding the Euler-Bernoulli equation from 
multiple points of view. Elastic deformation (moment of load) not only builds a 
perturbation and inertial moments, but there is the influence of gravitational, centrifugal, 
Coriolis torques (single and coupled), bending moments of other modes (which due to the 
coupling affect the motion of the considered mode), and moments that are caused by the 
action of external forces. Due to the strong coupling, there is a diversity in the structure 
of the extended form of the Euler-Bernoulli equation of each mode. Damping is an 
integral part of the characteristics of elasticity of real systems and is naturally included in 
the Euler-Bernoulli equation. All of these features and this whole discussion is not just 
related to the Euler-Bernoulli equation but also to motion equation for any point (and the 
top point) of the elastic line. This is the case because the motion equation follows directly 
from the Euler-Bernoulli equation defining boundary conditions. 

It is concluded that the definition of kinematic models is of particular importance. A 
special attention is paid to a new interpretation of equation (3). In this paper, this is a 
solution to the Euler-Bernoulli equation that defines the form of the elastic line (position 
and orientation of every point in the space of the Cartesian coordinates) of the considered 
mode, segment and finally the robot. 

It is pointed out that the elastic deformation is the consequence of the total robot 
system dynamics which is essentially different from the widely used method that implies 
the adaptation of the “assumed modes technique”. 

The dynamics of mechanism just over the sizes of elastic deformation is included into 
its definition, resulting from the dynamics of the motion of the mechanism. 
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RAZLIKE IZMEĐU IZVORNE I NOVE FORME EULER-
BERNOULLI JEDNAČINE KAO I NJENOG REŠENJA 

Mirjana Filipović 

Pri konstrukciji složenih robotskih i sličnih mehanizama, često se koriste laki materijali koje 
karakteriše elastičnost segmenata. Radi postizanja precizne i brze kontrole kretanja takvih 
mehanizama potrebno je da se sintetizuje njihov visoko verodostojni model. To bi bilo od velike 
važnosti za njegovu analizu i sintezu. Polazi se od prvih istraživanja u ovoj oblasti, a to su 
originalna forma Euler-Bernoulli jednačine kao i njeno rešenje, što pri poređenju sa savremenim 
znanjima nameće potrebu proširenja istih jednačina sa više stanovišta. Nova forma Euler-Bernoulli 
jednačine, a takođe i njeno rešenje, se bazira na savremenim znanjima iz robotike, odnosno na 
znanjima klasične mehanike. To je jedini način da se kompletno sačuva informacija o složenosti 
kinematike i dinamike kretanja elastičnog mehanizma. 

Ključne reči: Euler-Bernoulli jednačina, elastičnost linka, sprezanje, kinematka, dinamika 
 
 


