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Abstract. Application of the level set method extended for the case of non-convex 
Hamiltonians is illustrated by the three dimensional (3D) simulation results of the 
profile evolution during anisotropic wet etching of silicon. Etching rate function is 
modeled on the basis of the silicon symmetry properties, by means of the interpolation 
technique using experimentally obtained values of the principal [100], [110], [111], 
and high index [311] directions in KOH solutions. The resulting level set equations are 
solved using an open source implementation of the sparse field method. 
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INTRODUCTION 

Micro and Nano Electro Mechanical systems (M(N)EMS) represent a rapidly ex-
panding field of semiconductor fabrication technologies for producing micro and nano 
scale mechanical, electric, optical, fluidic, and other devices [1]. In an ideal M(N)EMS 
design environment, refined control of etched profiles is one of the most important tasks 
of M(N)EMS manufacturing process. In spite of its wide use, the simulation of etching 
for M(N)EMS applications has been so far a partial success only, although a great num-
ber of commercial and academic research tools dedicated to this problem are developed.  

Actually, two types of simulations exist [2]: the first category comprises simulators 
describing etching process on the atomistic level, usually including the description of 
etched surface morphologies. The second type deals with the prediction of the etching 
profile evolution in engineering applications, typically including the combination of 
etching with other MEMS manufacturing techniques. The so called atomistic simulators 
based on Cellular Automata and Monte Carlo methods [2-7] belong to the former group. 
In this methods, a silicon substrate is represented by a large number of cells that reside in 
a crystalline lattice. During the etching process, the state of each individual cell, i.e. 
whether it is removed from or remains within the lattice, is determined by the strength of 
chemical bonds and link status of its lattice neighbors. Also, the step-flow aspect [8] of 
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wet etching process fits well into Cellular Automata method [7]. Until now, the most 
common type the of the engineering simulators are so called geometrical simulators [9].  

The level set method for evolving interfaces [10] belongs to the geometric type of 
methods, and it is specially designed for profiles which can develop sharp corners, 
change of topology and undergo orders of magnitude changes in speed. It is based on 
Hamilton–Jacobi type equation for the level set function using techniques developed for 
solving hyperbolic partial differential equations. This method is free from any implicit 
assumptions about the nature of the processes that force interface evolution, and the 
whole physics and chemistry of them are contained in just one parameter - normal 
component of the surface velocity. During the last years several variants of the level set 
methods have been developed with application to micro fabrication problems [11,12]. In 
this study we present an anisotropic etching simulator based on the sparse field method 
for solving the level set equations. The sparse-field method itself, developed by Whitaker 

[13], and broadly used in image processing community, is an alternative to the usual 
combination of narrow band and fast marching procedures for the computationally 
effective solving of the level set equations [14,15]. Our primary goal is to develop an 
accurate, stable and efficient 3D code for tracking of the etching profile evolution that 
includes different physical effects such as anisotropy and material-dependent propagation 
rates, yet being computationally effective to run on desktop PCs.  

The paper is organized as follows: in section II some aspect of the silicon wet etching 
process are discussed. After that, the relations describing the angular dependence of the 
etching rates, based on an interpolation procedure and silicon crystal symmetry 
properties, are derived. In section III the necessary details for the implementation of the 
sparse field method for solving the level set equations in the case of etching rates defined 
in section II, are described. Section IV contains detailed analysis of the obtained 
simulation results for some interesting initial 3D shapes (cube and sphere).  

ANISOTROPIC WET ETCHING OF SILICON. ANGULAR DEPENDENCE OF THE ETCHING RATE 

Although silicon etching techniques are currently undergoing a revolution driven by 
the incorporation of plasma etching process, anisotropic wet chemical etching is still the 
most widely used processing technique in silicon technology [1].  

 
Fig. 1. The angular section defined by the planes (0 ≤ Nx; 0 ≤ Ny≤ Nx; 0 ≤ Nz) where the 

interpolation is performed. The symmetry elements and the symmetry operations 
are denoted. 
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Not only the cost of wet etching systems is much lower than that of plasma types, but 
also certain features can only be realized using anisotropic wet etching. Very complicated 
3D structures can be formed by this technique; it enables controlled undercutting of sus-
pended structures, not possible by other microfabrication techniques. It is also referred to 
as "bulk micromachining", since in this technology the body of the silicon wafer is etched 
away. 

The anisotropy of the etching process is actually the orientation dependence of the 
etch rate. Regardless of the great amount of work done in this field, there is no generally 
accepted single theory for a mechanism that explains the great anisotropy in silicon wet 
etching. It is accepted [6] that the origin of this macroscopic anisotropy in the etching 
process lies in the crystal site-specificity of the etch rates at the atomistic level.  

As stated earlier, in order to simulate the time evolution of 3D etching profiles it is es-
sential that exact etch rates in all directions are known. The etching rates for only a few 
principal axes are known, but they can be used to determine rate value in an arbitrary 
direction by an interpolation procedure. The problem of etching rate interpolation is 
equivalent to function interpolation over a sphere in 3D. For accuracy, the etching rate 
model must interpolate through the given etching rates and directions while maintaining 
its continuity, since possible requirement that the first derivative must be continuous also, 
is too high, as empirical studies have shown cusps in etching rate diagrams.  

Here we shall use etching rate model developed by Hubbard [9], that satisfies these 
conditions. Of course, this is not the only possibility; the problem of finding the optimal 
interpolation method is out of scope of this paper. It is supposed that x, y and z axes are 
aligned with [100], [010] and [001] crystal directions, respectively. The point group of 
silicon's symmetry m3m (subgroup of Fd3m space group) contains 48 elements. Since it 
is not easy to assemble angular section using three principal directions with which the 
whole space can be covered by the symmetry operations, only 16 out of 48 symmetry 
elements can be used for that purpose. As a result, it is necessary to look only at 1/16th of 
the all full angular extent (0 ≤ θ ≤ 90°; 0 ≤ φ ≤ 45°), or at the wedge defined by the planes 
(0 ≤ Nx; 0 ≤ Ny≤ Nx; 0 ≤ Nz), as it is shown in Fig. 1. The angular section, shown in gray 
in Fig. 1, is the region where the etching rate should be interpolated. The simplest method 
is to use only the experimental rate values for the principal directions [100], [110] and 
[111], since in three dimension three independent vectors are needed to define a basis. In 
that case, the interpolation region is actually the union of three sections defined by the 
principal vectors A[100, 111, 110], B[100, 111, 101] and C[001, 111, 101] (see Fig. 2a).  

 
Fig. 2. The a) three- and b) four-parameters inetrpolation regions. 

Following the procedure described in Ref. [9], the etching rate R in an arbitrary direc-
tion N(Nx, Ny, Nz) is then given by the interpolation relation:  
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where Rhkl is etching rate in [hkl] direction. Changing to the spherical coordinates: 

 θ=φθ=φθ= cos;sinsin;cossin zyx NNN , (2)  

it is straightforward to obtain the following three-parameter (R100, R110, and R111) etching 
rate angular dependence: 
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In Fig. 3 the resulting etching rate is shown in the full angular extent. The presence of 
cusps in the etching rates implies the existence of facets in the etching profiles.  

 

Fig. 3. The angular dependence of the etching rate calculated using three-parameter 
interpolation formula (3), for R111 = 0.005 μm/min, R100 = 0.797 μm/min,  
R110 = 1.455 μm/min. 

Better interpolation results can be obtained if additional experimentally obtained rates 
are included. For example, if include the next most important (high index) planes {311}, 
the interpolation region will consist of six sections: A[100, 311, 110], B[100, 101, 311], 
C[311, 111, 110], D[311, 101, 111], E[101, 113, 111] and F[101, 001, 113], as it is de-
picted in Fig.2b. Then, the etching rate R in an arbitrary direction N(Nx, Ny, Nz) will be 
given by the relation: 
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and corresponding angular dependence becomes: 
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Fig. 4 shows the four-parameter angular dependence for the values of parameters 
(R100, R110, R111, and R311) used in subsequent simulation examples. There is no any 
principal difficulty in including other known high index etching rates, only the resulting 
analytical expression will become more complicated. 

 

Fig. 4. The angular dependence of the etching rate calculated using four-parameter 
interpolation formula (5), for R111 = 0.005 μm/min, R100 = 0.797 μm/min, 
R110 = 1.455 μm/min and R311 = 1.436 μm/min. 

It is important to remember that all physical aspects of the etching process are 
contained in these angular dependences, and that they determine time evolution of the 
feature profile completely, appearance and disapearrance of particular planes and the 
final profile. For different values of the parameters these shapes look different. Inclusion 
of additional planes will also change the shape of angular dependences. 
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LEVEL SET METHOD FOR NON-CONVEX HAMILTONIANS 

Level set method, introduced by Osher and Sethian [10], is a powerful technique for 
analyzing and computing moving fronts in a variety of different settings. The level sets 
are used in image processing, computer vision, computational fluid dynamics, material 
science, and many other fields. Detailed exposition of the theoretical and numerical as-
pects of the method, and applications to different areas can be found in books [14,15], 
and recent review articles [16,17]. The basic idea behind the level set method is to repre-
sent the surface in question at a certain time t as the zero level set (with respect to the 
space variables) of a certain function ϕ (t, x), the so called level set function. The level 
set equation: 

 ( , ) 0R t
t

∂ϕ
+ ∇ϕ =

∂
x , (6) 

with the unknown function ϕ (t, x), where ϕ (0, x) = 0 determines the initial surface, can 
be rewritten in Hamilton–Jacobi form: 

 ( ( , )) 0,H t
t

∂ϕ
+ ∇ϕ =

∂
x  (7)  

where Hamiltonian is given by H = R (t, x)|∇φ(t, x)| (in this context the term "Hamilto-
nian" denotes a Hamiltonian function, not an operator). A detailed exposition about the 
Hamilton–Jacobi equation, the existence and uniqueness of its solution (especially about 
its viscosity solutions), can be found in Ref. [18]. We say that such a Hamiltonian is con-
vex (in ℜn) if the following condition is fulfilled: 

 
2

0
i jx x

H∂ ≥
∂ϕ ∂ϕ

 (8)  

where ϕxi is a partial derivative of φ(t, x) with respect of xi . If the surface velocity R (t, x) 
does not depend on the level set function φ(t, x) itself, this condition is usually satisfied. 
In that case, we can say that the problem is of free boundary type. In that case the spatial 
derivatives of ϕ can be approximated using the Engquist-Osher upwind finite difference 
scheme, or by ENO (higher-order essentially non-oscillatory) and WENO (weighted es-
sentially non-oscillatory) discretization schemes, that requires the values of this function 
at the all grid points considered. The resulting semi-discrete equations can be solved us-
ing explicit Euler method, or more precisely by TVD (total-variation diminishing) 
Runge-Kutta time integration procedure (see Refs. [14] and [15] for the details). 

Several approaches for solving level set equations exist which increase accuracy 
while decreasing computational effort. They are all based on using some sort of adaptive 
schemes. The most important are narrow band level set method, widely used in etching 
process modeling tools, and recently developed sparse-field method [13], implemented in 
medical image processing ITK library [19]. The sparse-field method use an approxima-
tion to the distance function that makes it feasible to recompute the neighborhood of the 
zero level set at each time step. It computes updates on a band of grid points that is only 
one point wide. The width of the neighborhood is such that derivatives for the next time 
step can be calculated. This approach has several advantages. The algorithm does pre-
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cisely the number of calculation needed to compute the next position of the zero level set 
surface. The number of points being computed is so small that it is feasible to use a 
linked-list to keep a track of them, so at each iteration only those points are visited whose 
values control the position of the zero level set surface. As a result, the number of com-
putations increases with the size of the surface, rather than with the resolution of the grid.  

The non-convex Hamiltonians are characteristic for anisotropic etching and deposition 
simulations [12].The upwind finite difference scheme cannot be used in the case of non-
convex Hamiltonians. The simplest scheme that can be applied in these cases is the Lax–
Friedrichs, one which relies on the central difference approximation to the numerical flux 
function, and preserves monotonicity through a second-order linear smoothing term [15]: 
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and αx(αy, αz) is a bound on the partial derivative of the Hamiltonian with respect to the 
first (second, third) argument: 

 max , max , maxx y z
x y z

H H H∂ ∂ ∂
α = α = α =

∂ϕ ∂ϕ ∂ϕ
. (11)  

It is essential to express the etching rates in terms of the level set function itself in or-
der to obtain level set equation in Hamilton-Jacobi form. To accomplish this goal, we 
start from the facts that the unit vector normal to the zero level set is given by 

/= ∇ϕ ∇ϕN , and that the angles θ and φ are connected to the level set function by the 
22sin 1 /zθ = − ϕ ∇ϕ and /ytgφ = ϕ ∇ϕ . In this way the rate R can be expressed in 

terms of the geometrical properties of the level set function itself, and the Hamiltonian 
becomes: 
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for the simple etching rate angular dependence given by the relation (3). In order to im-
plement Lax–Friedrichs scheme it is necessary to find first derivatives appearing in (11). 
After some straightforward algebraic manipulations the following relations can be ob-
tained: 
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If the high index planes {311} are included, the expressions become more compli-
cated because the interpolation region is then divided in six sub-regions. Since one of the 
goals of this study is to investigate the influence of these planes on the final outcomes, 
we shall write them explicitly. The Hamiltonian corresponding to the relation (5) has the 
form: 
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The first and second derivatives of the Hamiltonian appearing in (12) and (16), 
needed for checking their convexity condition (8), are too cumbersome to be stated here. 
Actually, it is not necessary as it is obvious, from the Figs. 2 and 3, that the etching rates 
(and corresponding Hamiltonians) are non-convex functions. It means that it is conven-
ient to implement already mentioned procedure [20] in order to solve numerically initial 
value problem (7). 
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SIMULATION RESULTS 

Potassium hydroxide (KOH) is the most common and the most important chemical 
etchant, because of its excellent repeatability and uniformity in fabrication, and its low 
production cost. In actual calculations we made use of measured [21] etching rates in 
[100], [110], [111] and [311] crystal directions, for 30% KOH concentration at 70 °C 
(R111 = 0.005 μm/min, R100 = 0.797 μm/min, R110 = 1.455 μm/min and R311 = 1.436 
μm/min). The actual shapes of the initial surfaces are described using simple geometrical 
abstractions. In the beginning of the calculations this descriptions are transformed into 
the initial level set functions using the fast marching method [14]. If the initial profile is 
defined with a bitmap mask, a special routine is used to generate corresponding initial 
level set function. Our implementation is based on ITK library [19]. The classes describ-
ing the level set function and the level set filter are reimplemented according to the pro-
cedures for treating non-convex Hamiltonians described in the previous section. 

Since the cube is the simplest isometric crystal form [12], first we present the time 
evolution of the initial cube shape made of {100} planes. In Fig. 5, the changes of the 
cube form are shown at for equidistant time moments. 

 
Fig. 5. Etching profiles of the silicon cube with initial edge of 50μm after 0s, 400s, 800s 

and 1200s, obtained using the four-parameter interpolation formula. 

It is obvious that the initial cube shape gradually transforms to the final (rhombic) do-
decahedron made of the fastest etching {110} principal planes, through the combinations 
of these shapes. It is expected given that dodecahedron is the only isometric form made 
of {110} planes. Almost the same results follow from the three and four parameters 
etching rates, given with relations (3) and (5) respectively, so we show only the later in 
Fig. 5. If the fastest planes are not {110} family, the final profile shape will change ac-
cordingly. 

In order to test the strength of the method we have chosen to simulate etching of the 
silicon ball in KOH etchant. The initial spherical surface contains all possible velocity 
directions, so it is expected that the anisotropy of the etching process will produce the 
most dramatic changes of the initial shape. This shape, or more precisely hemisphere, is 
used in the experimental setup [21, 23] for measuring etching rates anisotropy, also. In 
such an experiment a hemisphere is only etched for a short time in order to minimize the 
inteference of neighbouring orientations. Here we shall follow etching process until its 
final stage. 

Fig. 6 illustrates the changes of the initial spherical shape at four equidistant (reduced) 
time moments for both three and four parameters etching rates. In both cases the final 
stage is dodecahedron for the same reason as in the case of the cube shape. Of course, it 
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wouldn't be true, if the planes {110} are not the fastest. It is different from our prelimi-
nary results published in Ref. [24], where calculations with three parameters etching rates 
were performed on coarser mesh and with underestimated smoothing term in Lax–Frie-
drichs finite difference scheme. Intermediate shapes for the three and four parameters 
rates differ significantly. 

 
Fig. 6. Etching profiles of the sphere with initial radius of 25μm after 0s, 200s, 400s and 

600s, obtained using (upper row) three- and (lower row) four-parameter 
interpolation formulas. 

When high index directions <311> are not included (Fig. 6a) the transitional shape are 
composed of (quasi) tetrahexahedron, consisting of 24 triangles belonging to {012} fam-
ily of planes, and dodecahedron crystal forms. Eventually the later prevails. By word 
"quasi" we mean curved, since the initial spherical shape cannot be transformed into 
polyhedral immediately. In the case when <311> directions are included and the angular 
dependence of the etching rates are given by (5), the evolution of the sphere begins with 
(quasi) hexoctahedron, the crystal form having 48 triangular faces belonging to {123} 
family of general planes. 

 
Fig. 7. An intermediate shape of the initial sphere obtained using a) three- and  

b) four-parameter interpolation formulas. The emerging crystal planes are denoted. 

These intermediate shapes are displayed in Fig. 7, with some important geometrical 
elements denoted. Hexoctahedron is the form closest to the spherical shape, among all 
crystal forms. It is a very strong argument that the angular interpolation of the etching 
rate with four parameters is correct, and that it reproduces the most relevant aspects of 
silicon wet etching.  
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CONCLUSIONS 

In this paper we have presented an application of the sparse field method for solving 
Hamilton-Jacobi equation with non-convex Hamiltonian in the 3D simulations of the 
profile surface evolution during anisotropic wet etching of silicon. It was shown that 
inclusion of additional directions for which the etching rates are known, would lead to the 
better quantitative agreement with the measured data. The resulting equations, describing 
interface surface evolution, are of Hamilton–Jacobi type and they can be solved using 
techniques developed for hyperbolic equations. The analysis of the obtained results 
confirm that regardless of the initial shape the profile evolution ends with the crystal form 
composed of the fastest etching planes, {110} in our model. Results presented here 
indicate that the sparse field level set method can be used as an effective tool for wet 
etching process modeling, and that it is a viable alternative to the cellular automata 
method, which is today widely used in for that purpose.  

The present work has been carried out under MNZŽS 141025 project. 
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PRIMENA LEVEL SET METODA NA  
NEKONVEKSNE HAMILTONIJANE 

B. Radjenović, M. Radmilović-Radjenović, M. Mitrić 

Primena level set metoda, proširenog na slučaj nekonveksnog Hamiltonijana, je ilustrovana 
rezultatima trodimenzionalne (3D) simulacije evolucije profila tokom anizotropnog hemijskog 
(mokrog) nagrizanja u silicijumu. Funkcije brzine nagrizanja su modelovane uzimajući u obzir 
svojstva simetrije silicijuma, korišćenjem interpolacione tehnike i eksperimentalno dobijenih 
vrednosti glavnih [100], [110], [111] i [311] pravaca u KOH rastvaraču. Rezultujuće level set 
jednačine su rešavane implementacijom sparse field metoda. 


