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Abstract. We review the consequences of the gerade-ungerade symmetry breaking in 
HD molecule. A particular attention is devoted to electronic states close to n=2 
dissociation limit. The effects of the breakdown of the Born-Oppenheimer approximation 
are discussed. For the description of the molecular dynamics the formulation of the 
coupled-sates method is given. The method is applied to calculations of loosely bound 
states in the outer well of the II'1Πg potential. The results are in excellent agreement 
with experimental data and calculations based on a semi-empirical potential.  
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INTRODUCTION 

The main differences in the spectral characteristics of the isotopomers H2, D2 and HD 
stem from differences of their reduced nuclear masses. However, in the case of HD 
molecule an additional and important fact is the breakdown of the molecular gerade-
ungerade (g-u) symmetry (i.e. symmetry related to the inversion of the electronic 
coordinates with respect to the midpoint of the internuclear separation). One of the well 
known consequences is the appearance of the electric dipole moment in the ground 
electronic state [1] and the observation of the infra red, i.e. vibrational [2] and pure 
rotational spectrum in the far infra red domain [3]. As for the electronic transitions in 
HD, the g-u symmetry breaking is here responsible for the occurrence of the otherwise 
dipole forbidden g ↔g or u ↔u transitions. These transitions have been observed in 
EF1Σg

+- X1Σg
+ [4,5] , GK1Σg

+- X1Σg
+ and I1Πg - X1Σg

+ [4] systems. More recently, strong 
g-u coupling was studied between the rovibrational H~ 1Σg

+ and B~ 1Σu
+ states [6]. More 

details on the above issues can be found in a recent review [7]. 
In suitably chosen coordinates, the g-u symmetry breaking term in the Hamiltonian 

describing the HD molecule is proportional to the mass difference of the isotopes and 
leads to non-adiabatic corrections which go beyond the Born-Oppenheimer (BO) 
approximation. 
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The states close to the n=2 dissociation limit of HD are particularly interesting 
because they are markedly different from their homonuclear analogues. The proper 
account of the g-u nonadiabatic coupling reveals that there are actually two different 
dissociation limits corresponding to H*(n=2)+D(n=1) and H(n=1)+D*(n=2), separated by 
an energy gap of 22.38 cm-1 related to the atomic isotope shift. One of the BO potentials 
from the n=2 manifold is the II'1Πg double well potential. Recently, very precise and 
systematic measurements [8,9] of the rovibrational states corresponding to the outer well 
(I'1Πg) have been reported. In order to interpret their results the authors have constructed 
a semi-empirical potential [8] that incorporates the effects of the g-u coupling. 

In the following sections we shall describe a theoretical approach based on the 
coupled-states method that goes beyond the notion of a single effective potential. After an 
analysis of the asymptotic forms of all relevant nonadiabatic couplings a minimal sets of 
coupled BO states are determined for description of both e-parity and f-parity 
rovibrational states in the I'1Πg potential well. The calculated energy levels are in very 
good agreement with experimental data. 

Atomic units (me=e=ћ=1) are used throughout, except when explicitly stated. 

HAMILTONIAN AND COUPLED EQUATIONS 

We neglect the spin-orbit and hyperfine interactions as they are much smaller than g-u 
coupling, concentrate on singlet (total electronic spin S=0) states of HD and therefore 
ignore the spin variables. After the separation of the center-of-mass motion, introduction 
of the internuclear vector HD RRR

rrr
−=  with spherical polar coordinates {R,θ,ϕ} and using 

the relative position vectors 1r
r

 and 2r
r

of the electrons with respect to the geometric center 
between the nuclei (see Fig.1) , the non-relativistic Hamiltonian of HD molecule is : 

 R gu mp eH T H H H= + + + , (1) 

where TR, the nuclear kinetic energy term is  

 21
2R RT = − ∇

μ
 , (2) 

Hgu, the g-u coupling (cross derivative) term is 

 
1,2

1
2gu R j

ja

H
=

= − ∇ ⋅ ∇∑
μ

,  (3) 

Hmp, the mass polarization term is 

 2

1,2

1 ( )
8mp j

j
H

=
= − ∇∑

μ
,  (4) 

and He, the (BO) electronic Hamiltonian is 

 2
1 2

1,2

1 ( , , )
2e j

j
H V R r r

=
= − ∇ +∑

r r r .  (5) 
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In equations (1)-(5), the reduced mass of the nuclei is given by μ=mDmH/(mD+mH) 
=1223.8988 and the mass asymmetry is defined by μa=mDmH/(mD-mH) = 3674.1340. All 
the above operators are invariant with respect to transformation j jr r→ −

r r  except the g-u 
coupling term which transforms like Hgu → −Hgu. 

e1

e2

p

d

GC

r1

r2

R CM

 
Fig. 1. Relative position vectors used in description of HD molecule 

The exact integrals of motion, commuting with the Hamiltonian (1) are the square of 
the total angular momentum 2J

r
, its projection JZ onto the space-fixed Z-axis and the 

parity operator i corresponding to inversion of all (nuclear and electronic) space-fixed 
coordinates. So, we can consider the subspaces with the corresponding fixed angular 
momentum quantum numbers J, M and parity ( 1) 1J p+− = ±% , where p% =0 corresponds to 
the so called e-parity states and p% =1 to f-parity states.  

The total molecular wave function can be expanded as: 

 1 2 1 2
1 ( , , , , ) ( ) ( , , , )pJM pJMR r r R r r
R Λ Λ

Λ

Ψ = Φ∑% %r r r r
γ γ

γ
θ ϕ χ θ ϕ  (6) 

 
1 2 1 2

0

1 2

1 ( , , , ) [ ( , ) ( , ; )
2(1 )

( 1) ( , ) ( , ; )]

pJM J
M

p J
M

r r D r r R

D r r R

Λ Λ Λ
Λ

+
−Λ −Λ

Φ =
+

+ −

%

%

r r r r%

r r%

γ γ

σ
γ

θ ϕ ϕ θ ψ
δ

ϕ θ ψ
 (7) 

where 

 2 1( , ) ( , ,0)
4

J J
M M

JD D±Δ ±Δ
+

=% ϕ θ ϕ θ
π

 (8) 

and ( , , )J
MD ±Δ ϕ θ ψ  are the Wigner rotational functions. The BO electronic wave 

functions in a molecular (body-fixed) coordinate frame with the z-axis along the 
internuclear vector, 1 2( , ; )r r R±Λ

r r
γψ , are eigenfunctions of the electronic Hamiltonian (5) 
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corresponding to BO potential energy curves ( )BOV RΛγ . They parametrically depend on R 
and are labeled by ±Λ -the eigenvalue of the projection of the electronic orbital angular 
momentum Lz onto the internuclear axis and by an additional set of quantum numbers γ. 
Parameter σ=1 in the case of Σ- BO states and σ=0 in all other cases. 

Using the expansion (6) for solving the eigenvalue problem for the total Hamiltonian 
(1), one can derive a set of coupled equations for the radial functions χγΛ(R): 

 ' ' ' '
' '

1|pJM pJMRH E
RΛ Λ Λ Λ

Λ

Φ Φ =∑ % %
γ γ γ γ

γ
χ χ  (9) 

N=2 dissociation limit 

We now focus our attention to states correlating to the n=2 dissociation limit of HD. 
Solving for the eigenvalues of the electronic Hamiltonian (5) one finds 6 singlet BO 
potentials: 1B u

+Σ , 1II' gΠ , 1EF g
+Σ , 1B' u

+Σ , 1C uΠ  1GK g
+Σ ,, (see Fig.2). 

 
Fig. 2. BO potential curves in hydrogen. Three dissociation limits correspond to 

H(1s)+H(n) with n=2, n=3 and n= ∞ . The uppermost curve is the ground state of 
the H2

+ ion. From [7]. 

Instead of the spectroscopic labels: B, II', EF, B', C and GK one can respectively use 
the values of the additional quantum number l=1,1,0,0,1 and 1, corresponding to the 
asymptotic atomic electronic orbital angular momentum quantum number of the excited 
(n=2) electron. So we can introduce a set of quantum numbers: α≡γΛ≡s lΛ, where s=g,u. 
With these BO states, according to (7), one can form 2 f-parity basis functions involving 
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only Π - states and 6 e-parity basis functions involving 4 Σ -states and 2 Π - states. For 
either parity, coupled equations (9) take the form: 

 
2

2 2

1 ( 1) ( ) ( ) ( ) ( ) ( ) 0
2 2

BO adJ J V R V R E R V R R
R R ≠

⎛ ⎞∂ +
− + + + − + =⎜ ⎟

∂⎝ ⎠
∑α α α αβ β
β α

χ χ
μ μ

. (10) 

The diagonal potentials are sums of the BO potentials and the so called adiabatic 
corrections: 

 
2 2 22

2 2

1( ) | |
2 2

x y zad
mp

L L L
V R H

R R
+ −∂

= − + +
∂α α αψ ψ

μ μ
,  (11) 

and the off diagonal coupling terms are defined by 

 1( ) ( ) |pJM pJMV R R RH
R

= Φ Φ% %
αβ β α β βχ χ  (12) 

 
Fig. 3. Dashed curves are unperturbed adiabatic potentials. Full lines are 'effective 

adiabatic potentials' as defined in (14). From [7]. 

In the asymptotic region, when R → ∞ we find [10] for diagonal potentials: 
1 1( )  a.u.
2 8

BOV ∞ = − −α  and -15( ) 56.039cm
16

adV ∞ = =α μ
, for all states. At the same time, 

all couplings are zero except the g-u couplings -13( ) 11.20cm
16 a

V ∞ = =αβ μ
 between 
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1 1 II'  - Cg uΠ Π  states (of both, e- and f- parities) and between 1 1B -GKu g
+ +Σ Σ  and 

1 1B' -EFu g
+ +Σ Σ  states (of e-parity). One can eliminate these constant couplings at infinity 

by diagonalizing the 2×2 potential energy matrices: 

 
( )

( ) ( ) ( )
( )

g gu

gu u

V R V
R V R R

V V R
⎡ ⎤

=⎢ ⎥
⎢ ⎥⎣ ⎦

ψ ψ  (13) 

and defining new “effective adiabatic potentials":  

 
2

2( )
2 2

g u g u
gu

V V V V
V R V±

+ −⎛ ⎞
= ± +⎜ ⎟

⎝ ⎠
 (14) 

These potentials are shown in Fig.3 together with the unperturbed potentials. It is seen 
that the main effect is the appearance of two dissociation limits corresponding to 
H*(n=2)+D(n=1) and H(n=1)+D*(n=2). Note that at smaller internuclear separations 
effective potentials approach unperturbed values indicating the approximate validity of 
the g-u symmetry. 

Bound States in outer I'1Πg potential 

The bound states of HD localized in the outer well of the II'1Πg potential have been 
studied in XUV+IR multi-step laser excitation experiments [8,9]. The excitation scheme 
is shown in Fig.4. 

 
Fig. 4. Excitation scheme in multi-step laser excitation experiment. From [9]. 
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A XUV laser excites HD from the X1Σ+
g ground state potential to intermediate B1Σ+

u 
state, and the IR laser populates states in I'1Πg potential. A third pulsed UV laser excites 
the HD molecules from the I' state into the dissociation continuum of HD+ forming either 
H+ or D+. The ions are mass selected and detected by an electron multiplier. 

A typical spectrum obtained by changing the frequency of the second laser is shown 
in Fig.5. Note that the continuum onset in the upper trace corresponds to the H*+D 
dissociation limit, whereas the onset in the second trace corresponds to the H+D* 
dissociation limit, in accord with Fig.3. Various peaks correspond to bound states as 
indicated at the top of the figure. In particular, in this way most of the bound states from 
the I' potential, of both, e – and f -symmetry have been determined. The authors have also 
constructed a single semi-empirical potential in order to theoretically interpret their 
results [7,8]. 

 
Fig. 5. H+ and D+ ion signals obtained after the UV ionization pulse. The XUV laser is 

tuned to the 1 1B -X (18,0) (0)u g R+ +Σ Σ transition and the frequency of the IR laser 
is varied . From [8]. 

Recently, we have solved the coupled equations (10) in order to go beyond the single-
effective potential description [10]. The binding energies of f-parity rovibrational states 
have been calculated by solving two coupled equations (10) with α,β=1,2. The index "1" 
is identified with the set of quantum numbers 1≡{s=g, l=1, Λ=1} (that is with the II'1Πg  
potential) and index "2" with the set of quantum numbers 2≡{s=u, l=1, Λ=1} (that is with 
the C1Πu potential). 
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Fig. 6. Adiabatic potentials (BO potentials plus adiabatic corrections) as functions of the 

internuclear separation. (a) At small to intermediate separations. (b) At large 
separations showing the outer shallow well of the I' potential. (c) At large 
separations and close to dissociation limits. The zero of energy is chosen to 
correspond to the lower (H*(n=2)+D(1s)) limit so that the upper (H(1s)+D*(n=2)) 
limit is located at 2V12(∞)=22.4 cm-1. 
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While for the BO potentials and adiabatic corrections there are ab initio [11,12] and 
asymptotic [13] results in the literature , this is not the case for the coupling matrix 
element (12) which in this case involves only Hgu. Since we are interested here in the 
states localized in the outer well of the II'1Πg  potential, that is, at large internuclear 
distances, we shall replace V12(R) with its (constant) asymptotic value at R→∞ [10]:  

 -1
12 21 12

3( ) ( ) ( ) 11.20 cm
16 a

V R V R V= ≈ ∞ = =
μ

 (15) 

Table 1. Energies (in cm−1) of the I'1Πg f −parity states relative to the X1Σ+
g (v = 0, J = 0) 

ground state. Eobs − experiment data [8,9] Ea
calc − coupled states calculations [10], Eb

calc − 
semi-empirical potential [8], Δi

oc = Eobs − Ei
calc, i = a,b 

J Eobs Ecalc
a Ecalc

b Δoc
a Δoc

b 

v=0 
1  118548.18 118548.33   
2 118552.95 552.99 553.11 -0.04 -0.16 
3 560.03 560.14 560.20 -0.11 -0.17 
4  569.53 569.55   

v=1 
1 118614.17 118614.23 118615.36 -0.06 -1.19 
2 618.43 618.44 618.81 0.01 -0.38 
3 623.75 623.71 623.89 0.04 -0.14 
4 630.38 630.13 630.50 0.25 -0.12 

v=2 
1 118650.51 118650.34 118650.13 0.17 0.38 
2 652.89 652.71 652.26 0.18 0.63 
3 655.15 655.08 655.31 0.07 -0.16 
4 659.26 659.07 659.14 0.19 0.12 

v=3 
1 118663.650 118663.493 118663.42 0.157 0.230 
2 664.544 664.359 664.29 0.185 0.254 

To solve the coupled equations (10) we used the particle-in-the-box discrete variable 
representation (DVR) of Colbert and Miller [14]. The converged results were obtained by 
using NDVR=600 equidistant grid points spanning the interval from Rmin=0.5 to Rmax=75.  

Tab. 1 shows the results of the calculated term values for the f-parity states, with the 
assumed dissociation energy D=118664.80 cm-1. It can be seen that the agreement with 
experiments [8,9] is excellent and that the close-coupling method [10] is superior to 
calculations using a single semi-empirical potential [8] . 

Similarly, when treating e-parity states we include only the dominant direct couplings 
of the II'1Πg  e-parity state at large internuclear separations. Besides the constant g-u 
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coupling (15) with C1Πu e-parity state, this includes the rotational coupling with the 
GK1Σ+

g state, which has an R-2 dependence. All other couplings fall off more rapidly, like 
R-4 and faster [10], and are therefore neglected. The third basis function is labeled by 
index "3" identified with quantum numbers 3≡{s=g, l=1, Λ=0} (corresponding to the 
GK1Σ+

g  potential). The V33(R) potential was constructed using the ab initio data from 
[15] and asymptotic multipole expansions taken from [13]. The GK1Σ+

g - II'1Πg  rotational 
coupling is given by 

 13 31 2

( )( ) ( ) 2 ( 1)
2
S RV R V R J J

R
= = +

μ
  (16) 

with S(R) = 〈Ψ1| L+ |Ψ3〉 taken from ab initio data [11]. We have set V23(R) = V32(R) = 0 
since this interaction actually falls off like R-4. 

Table 2. Energies (in cm−1) of the  I'1Πg e −parity states relative to the X1Σ+
g (v = 0, J = 0) 

ground state. Eobs − experiment data [8,9] Ea
calc − coupled states calculations [10], Eb

calc 
b
calcE  − semi- empirical potential [8], Δi

oc = Eobs − Ei
calc, i = a,b 

J Eobs Ecalc
a Ecalc

b Δoc
a Δoc

b 

v=0 
1 118548.14 118548.18 118548.33 -0.04 -0.19 
2 552.92 552.88 553.11 0.04 -0.19 
3 560.05 560.00 560.20 0.05 -0.15 
4 569.30 569.32 569.55 -0.02 -0.25 

v=1 
1 118614.17 118614.23 118615.36 -0.06 -1.19 
2 618.43 618.44 618.81 0.01 -0.38 
3 623.75 623.71 623.89 0.04 -0.14 
4 630.38 630.13 630.50 0.24 -0.12 

v=2 
1 118650.51 118650.34 118650.13 0.17 0.38 
2 652.89 652.71 652.26 0.18 0.63 
3 655.15 655.08 655.31 0.07 -0.16 
4 659.26 659.07 659.14 0.19 0.12 

v=3 
1 118663.650 118663.493 118663.42 0.157 0.230 
2 664.544 664.359 664.29 0.185 0.254 

The calculated term values for e-parity states are shown in Table 2. It is obvious that 
the results obtained by solving coupled equations are superior to those obtained by using 
single semi-empirical potential. In particular, in the case of the state (v=1, J=1), we see 
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the largest deviation (-1.19 cm-1) of the semi-empirical value from the experimental 
result. The reason for this is that this state has an inherent two-channel character due to 
the quasi-resonance with an energy level in the C1Πu potential [10] and therefore can be 
precisely described only by the coupled-state method. 

CONCLUSION 

We have emphasized that the g-u symmetry breaking in HD is a non-adiabatic effect. 
Therefore, the proper theoretical framework for description of this phenomenon is the 
method of coupled state equations. A specific property of the g-u coupling is that it does 
not vanish at infinite internuclear separations. This, however, leads to proper description 
of two dissociation limits: H*(n=2)+D(n=1) and H(n=1)+D*(n=2). For bound states lo-
cated in the outer well of the II'1Πg potential the asymptotic description works well. For 
incorporating the g-u symmetry breaking effects for other states, new ab initio calcula-
tions providing the R-dependence of non-adiabatic couplings are necessary.  
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NARUŠENJE GERADE – UNGERADE SIMETRIJE U HD: 
STANJA BLISKA N=2 DISOCIJATIVNOM LIMITU 

Tasko Grozdanov 

Dat je pregled posledica narušenja gerade-ungerade simentrije u HD molekulu. Posebna 
pažnja je posvećena elektronskim stanjima bliskim n=2 disocijativnom limitu. Diskutovani su efekti 
vezani za narušenje Born-Oppenheimer-ove aproksimacije. Za opisivanje dinamike molekula 
formulisan je metod spregnutih stanja. Metod je primenjen za izračunavanje slabo vezanih stanja u 
spoljašnjoj jami II'1Πg potencijala. Rezultati se odlično slažu sa eksperimentom i izračunavanjima 
baziranim na semiempirijskompotencijalu. 


