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Abstract. In this paper, we present the concept of the time delay estimation based on the 
transformation of real sensor signals into analytic ones. We analyze the differential time 
delay values obtained using real seismic signals, simulated complex analytic signals and 
simulated complex analytic signals with real parts coming from real seismic signals. The 
simulation results indicate that the application of complex analytic signals leads to 
reliable computation of the differential time delay. The influence of specific signal 
parameters on spectral coherence threshold in systems for passive localization and 
proposed methods for lowering the threshold is analyzed. The computation of all 
differential time delays with respect to the reference sensor (geophone) is based on the 
application of Generalized Cross-Correlation (GCC) applied on corresponding analytic 
signals. The difficulties to select a peak of cross-correlation function that corresponds to 
true differential time delay when dealing with real signals are significantly reduced if 
GCC is applied on analytic signals. The efficiency of the proposed technique on 
differential delay estimation is performed on deterministic and real-life signals. 

Key words:  Array signal processing, complex analytic signal, differential time delay, 
generalized cross-correlation, source localization, spectral coherence  

1. INTRODUCTION 

The localization of the signal source using passive sensors is applied in various fields. 
Source bearing and range estimation is one application of Time Delay Estimation (TDE). 
The most important parameters in passive source localization are propagation velocity of 
waves and differential time delay of signals. To perform passive seismic source localiza-
tion [1], [2], it is necessary to determine the propagation velocity seismic waves [3] and 
the difference time delay of the signals. The differential time delay can be obtained using 
real seismic signals or simulated complex analytic signals [4] with real parts coming from 
real seismic signals. The techniques developed for acoustic signal processing can be suc-
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cessfully adapted for application of passive localization of seismic wave sources. The 
efficiency circle method can be used for determination of the source coordinates in the 
explicit form [5]. Thus, acoustic signals, with well-known propagation velocity in the air, 
can be efficiently utilized not only for vehicle localization, but also for determination of 
their motion speed. Composed method can be used in passive source localization systems 
with multiple distributed sub arrays to estimate TDE between the widely separated sen-
sors [6]. In order to simultaneously track trajectories of several acoustic sources, ad hoc 
sensor arrays that make possible source localization based on signal energy measure-
ments can be formed [7]. Passive localization can be implemented in intelligent systems 
for detection, tracking and classification (recognition) type of sources [8]. Another very 
useful application, which uses similar methods, is passive localization of the fracture 
source in materials [9]. 

Systems for active localization can also use similar signal processing methods. In so-
nar-based systems, processing of sensor signals, obtained from hydrophones and used for 
underwater acoustic sources location, is performed [10]. The existing methods for source 
localization are based on the measurement of the following variables: TDE (time delay 
estimation between widely separated sensors), DOA (direction of arrival) [11], [12] and 
energy of received signal. TDE is applied at localization of wide-band signal sources. 
This method is considered in detail in [12]-[15]. The estimation of time delay using phase 
measurements is discussed in [16]. This method is also recommended for wide-band 
source localization. The boundaries for accuracy of passive localization of moving 
sources are discussed in [17]-[20]. The major goal of this research was to minimize vari-
ance (the random error) of differential time delay computation in the presence of statisti-
cally independent noise at the receiver. The research is then extended to the computation 
of the number of signal sources [21]-[22] and time delay estimation when the number of 
sources is larger than the number of sensors in the sensor array. This technique is based 
on high order spectra computation of the receiver sensor signals [23]. The main motiva-
tion to use higher order spectra is the lack of Gaussian noise influence. Computation of 
differential time delay among two received sensor signals is very important when wave 
propagation velocity of signal source position is determined. A lot of algorithms pre-
sented to determine differential delay are based on the cross-correlation function of sen-
sor signals. A method to determine differential delay based on FIR coefficient computa-
tion of one of the signals is presented in [24]. FIR filter coefficients are determined by 
minimizing the mean square error between the filtered signal and the other signal. 

The high-resolution method MUSIC is based on the eigen-decomposition of the sam-
ple covariance matrix of the received data by passive array sensors. In the case of imper-
fect signal coherence, the computation of the angle of arrival using high-resolution meth-
ods significantly degrades. If a priori characteristics of the spatial coherence matrix are 
known, the influence of imperfect coherence can be significantly reduced. To resolve this 
problem, the technique of matrix fitting is recommended [12]. 

The paper is organized as follows. In Section II, we present the cross-correlation 
method and formulate the coherence and magnitude square coherence functions. Based 
on these functions, the threshold of spectral coherence, which has to be achieved to per-
form reliable determination of differential time delay between signals, is considered. 
Section III contains an analytical data model of signal and signal parameters. The signals 
are modeled based on complex exponential polynomials. The waveforms of real-life ex-
perimental and deterministic sensor signals are presented. In Section IV, the efficiency of 



 Complex Analytic Signals Applied on Time Delay Estimation 13 

the proposed technique on simulated deterministic signals is tested. For several examples 
of known differential time delay, we display the results obtained for the real part of a 
simulated signal and for a complex analytic signal. Real and imaginary parts of the com-
plex simulated signal, connected by the Hilbert transformation, are depicted. The con-
nection between real and imaginary parts of the complex signal is utilized when the 
method is tested on real-life signals. Namely, by application of the Hilbert transformation 
on geophone signals, a complex analytic signal is obtained, which is necessary to apply 
the proposed method. Simulated analytic signals correspond to the geophone signals with 
an eigen-frequency (resonant frequency) of 16Hz and are represented by quadratic com-
plex polynomials. The influence of differential time delay magnitude on the accuracy is 
illustrated at signal to noise ratio of 10dB.  

2. TIME DELAY ESTIMATION (TDE) 

A The Basics of Cross-correlation 

The signals considered here originate from remote seismic sources and are picked up 
by geophones in noise environment. We assume that s1(t) and s2(t) are two spatially sepa-
rated sensors' outputs and that they can be mathematically modeled as: 

 1 1( ) ( ) ( )s t s t n t= +  (1) 

 2 2( ) ( ) ( )s t as t D n t= + +  (2) 

where s(t), n1(t) and n2(t) are real valued jointly stationary random Gaussian processes. 
The parameter is the attenuation (scale) factor and D is the value of differential time de-
lay. The characteristics of signal and noise remain stationary for finite observation time. 
The signal s(t) is uncorrelated with the noise n1(t) and n2(t). Another important condition 
is that D and the correlation length (inverse bandwidth) of the signal and the noise are 
much smaller than the observation time. The signal as(t + D) is a shifted and scaled ver-
sion of the unknown signal s(t). The basic approach to estimate the differential time delay 
is to shift the signal s1(t) with respect to the signal s2(t) and to look for the similarities 
between them. The best agreement will occur at a shift equal to D. The well known 
method for determining the differential time delay is to compute the cross-correlation 
function [13]: 

 
1 2 1 21 2( ) { ( ) ( )} ( ) ( )s s ss n nR E s t s t aR D R= + = − +τ τ τ τ  (3) 

where τ is a variable time, E{•} is expectation, Rss{•} is the autocorrelation function of 
s(t), and Rn1n2{•} is the cross-correlation of noise. If n1(t) and n2(t) are mutually inde-
pendent processes then Rn1n2(τ) = 0. The time delay D can be estimated when the maxi-
mizing function Rs1s2(τ) with respect to the parameter τ: 

 
1 2

arg max ( )s sD R=
τ

τ   (4) 
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By the Fourier transformation of Rs1s2(τ), the cross-spectral density (CSD) function 
Gs1s2(ω)can be obtained. Namely, Rs1s2(τ)and Gs1s2(ω) are the Fourier transform pair. The 
computation of the cross-correlation function is simpler in the frequency domain. 
Namely, 

 
1 2 1 2 1 2

{ ( )} ( ) ( ) ( )j D
s s s s ss n nF R G aG e G= = +ωτ ω ω ω   (5) 

where F is the Fourier transformation. If n1(t) and n2(t) are non-correlated, then 
Gn1n2(ω) = 0. In this case, the cross-spectral density spectrum CSD, Gs1s2(ω), becomes the 
scaled version of Gss(ω), multiplied by a complex exponential function. In practice, only 
the estimates 

1 2

ˆ ( )s sG ω  of Gs1s2(ω)and 
1 2

ˆ ( )s sR τ  of Rs1s2(τ) can be obtained from the finite 
number of observations of signals s1(t) and s2(t). The Generalized Cross-Correlation 
function (GCC) is obtained by the inverse Fourier transformation of (5) as: 

 
1 2 1 2

ˆ ( ) ( ) ( ) j
s s s sR W G e d

∝
−

−∝

= ∫ ωττ ω ω ω  (6) 

where W(ω) is a weight or window function. In order to smooth the estimated cross-cor-
relation, various window functions can be used to make possible a more accurate estima-
tion of time delay between signals. For smoothing, ROTH, SCOT, PHAT, ECKART [13] 
and other software packages can be used. The argument τ which maximizes the estimated 

1 2

ˆ ( )s sR τ  is ideally equal to the time delay D. Under ideal conditions, it is easy to exactly 
determine the location of the dominant peak (absolute maximum) of the cross-correlation 
function, i.e., to determine differential delay between the signals of the same source. The 
determination of the peak is impossible if the observation time for the cross-correlation 
function is unsatisfactory, especially in cases of small signal/noise ratios (SNR). When 
the cross-correlation function contains several multiple delays, the extraction of one peak 
becomes difficult. In practical applications, the signals have limited length and sources of 
noise are correlated, and in these cases, the cross-correlation function will not have a 
maximum at τ = D. 

The Coherence and Cramér-Rao lower bound 

In general, the CSD function Gs1s2(ω), Eq. (5), has the form [19]: 

 
1
2

1 2 1 2 1 1 2 2
( ) ( ) [ ( ) ( )]s s s s s s s sG G G=ω γ ω ω ω  (7) 

It follows that: 

 1 2

1 2 1 2

1 1 2 2

2
2 ( )

( ) ( )
( ) ( )

s s
s s s s

s s s s

G
C

G G
= =

ω
γ ω ω

ω ω
 (8) 
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where γs1s2(ω) is the spectral coherence function for the signals s1(t) and s2(t), and 
Cs1s2(ω) = ⎪γs1s2(ω)⎪2 is the magnitude square coherence function – MSC, Gs1s2(ω)and 
Gs2s2(ω)are power spectral densities (PSD) of the signals s1(t) and s2(t), respectively. The 
spectral coherence function describes the degree of correlation between sensor signals on 
all the frequencies of interest. Seismic waves that are generated by the seismic source are 
propagated through a real world seismic medium to the sensors in the sensor array. If the 
sensor signals in the spatially distant geophones have a high level of spectral coherence in 
a rather wide spectral band, the peak in the cross-correlation peak will be significant and 
the differential time delay can be accurately determined [6]. The general Cramér-Rao 
lower bound (CRB) [13] for the variance of time delay estimation is: 

 

1
22 ( )TDCRB D SNR d

T

−∞∧

−∞

⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫
π ω ω ω  (9) 

where T is the observation period. Assuming that the coherence, signal and noise PSD are 
flat over a bandwidth Δω centered at ω0, and using the notation Gs1s1(ω) = Gs1s1, 
Gs2s2(ω) = Gs2s2, Gnn(ω) = Gnn and γs1s2(ω) = γs1s2, from Eq. (9) the following equation is 
derived [6]: 

 ( )1 2

1
2

0
0

1( ) 2 1
2 12 TD s s

TCRB D SNR

−
⎛ ⎞⎡ ⎤⎛ ⎞Δ Δ⎛ ⎞⎜ ⎟⎢ ⎥= + ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

ω ω
ω γ

π ω
 (10) 

Threshold coherence 

If the condition for the perfect coherence is not satisfied, i.e., if ⎪γs1s2(ω)⎪ ≠ 1, then 
the function SNRTD(ω) characterizes the estimation performance. As shown in [24], the 
cross-correlation function of the narrow-band signal has a number of neighboring peaks 
(local maximums) with approximately the same magnitude (quasi-periodic function). In 
case of small SNR, the reliability of cross-correlation peak determination (corresponding 
to the true value of differential delay) decreases. The SNR value for coherent signals 
which delimits the regions of unreliable and reliable computation of differential delay 
(CR bound) is referred to as SNR threshold (SNRTHRESH). In other words, CRB is reach-
able if and only if SNRTD (ω) ≥ SNRTHRESH. SNRTHRESH is defined by [20]: 

 

2
2 2

10 0

2

6 1
24

2

THRESHSNR
T

−
−

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎜ ⎟Δ Δ Δ⎛ ⎞ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦⎜ ⎟
⎝ ⎠

ω ω
φ

ω ω ωπ
π

 (11) 

where: 

 
2

21( )
2

t

y

y e dt
∞ −

= ∫φ
π

 (12) 
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ω0 is the signal central frequency, Δω is the signal bandwidth, T is the observation time, 
(ΔωT / 2π) is the time bandwidth product of the observations and (Δω /ω0) is the frac-
tional bandwidth (FB) of the signal. With partially coherent signals, instead of SNRTHRESH, 
THRESHOLD COHERENCE is defined [6]. If we define: 

 
1 1 2 2

( ) ( )s s s s sG G G= =ω ω  (13) 

 
1 1 2 20 0( ) ( )n n n n nG G G= =ω ω  (14) 

 
1 1 0( )s s s=γ ω γ  (15) 

The threshold coherence γs at the central frequency ω0 can be represented as follows [6]: 

 

1
2 2

1

11

n

s
s

THRESH

G
G

SNR

⎧ ⎫⎡ ⎤
⎪ ⎪+⎢ ⎥
⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪+
⎪ ⎪
⎩ ⎭

γ   (16) 

Kozick and Sandler [6] have shown that γs can be determined when SNR, the frac-
tional bandwidth and the time-bandwidth product are specified, so that CRB bound of 
TDE is reached. Namely, the threshold coherence between non-coherent observed signals 
provides CRB at partially coherent signals. When the differential delay is computed for 
wideband signals, a certain degree of partial coherence can be tolerated while still pro-
viding CRB. Therefore, the partial coherence boundary which can still provide CRB is 
referred to as threshold coherence. From (16), one can conclude that the computation of 
threshold coherence makes sense only if Gs / Gn = SNRTHRESH. Thus, it is indirectly dem-
onstrated that the threshold coherence depends on the same parameters as SNRTHRESH. 
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Fig. 1. The threshold coherence versus the signal bandwidth for Gs / Gn = 10dB, and f0 = 16Hz. 
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Fig. 2. The threshold coherence versus the signal bandwidth with Gs / Gn = 10dB and T=1s. 

The parameters that have influence on the accuracy of the determination of the differ-
ential time delay of partially coherent signals are considered next. In the following fig-
ures, the functional dependence of the spectral coherence threshold (16) on a specific 
signal and observation parameters is shown. From Fig. 1, it can be observed that the 
threshold of coherence decreases with the increase of the observation time. For instance, 
for a characteristic seismic signal (obtained from geophone), having a central frequency 
f0 = 16Hz, (ω0 = 2πf0), SNR=10dB, Δω = 2π15rad/sec and an observation time of T=1s, 
the threshold coherence is γs ≈ 0.4. For the same signal parameters, when the observation 
time is increased to T=2s, the threshold coherence decreases to γs ≈ 0.3 (Fig 1). Hence, 
one of the ways to decrease the threshold coherence is to increase the observation time of 
the signal, i.e., the length of the cross-correlation function (this way, quality criteria to 
reach CRB bound are relaxed). This way, the threshold coherence at stationary (non-
moving) seismic sources can also be reduced. However, this approach is not suitable 
when seismic sources are moving, especially in geological media with small propagation 
velocities of seismic waves. For instance, the seismic surface R-wave propagation veloc-
ity varies from 100 m/s on the horizontal humus terrain to 6800 m/s in the marble [4]. 

The central frequency of the seismic signal also influences the coherence threshold of 
the observed signals (Fig. 2). Thus, the increase of the central frequency, when the band-
width stays the same, leads to the increase of the coherence threshold. We've already 
observed that for a signal with the central frequency f0 = 16Hz, SNR = 10dB, 
Δω = 2π15rad/sec, and observation time T=1s, the coherence threshold is γs ≈ 0.4. If the 
central frequency increases to f0 = 32Hz, the coherence threshold will be γs ≈ 0.8 (Fig.2). 
These results can also be interpreted as follows: the coherence threshold decreases with 
increase of the bandwidth. Namely, for the aforementioned signals with the central fre-
quency fo=32Hz, the coherence threshold for the same bandwidth of Δω = 2π15rad/sec is 
γs ≈ 0.78. In contrast, for the signal with the same central frequency but Δω = 
2π25rad/sec, the coherence threshold is γs ≈ 0.4. The bandwidth/central frequency ratio 
FB = Δω /ω (a.k.a. fractional bandwidth - FB) has a significant influence on the 
coherence threshold (see Fig. 3). For instance, a signal with FB = 0.5, SNR = 10dB and 
constant time-bandwidth product Time x Bandwidth = 100, has the coherence threshold 
γs ≈ 0.37. From the same figure, one can conclude that the increase of Time x Bandwidth 
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product leads to a decrease of the coherence threshold. Naturally, this can be achieved 
either by an increase of the observation time or by an increase of the bandwidth. When 
the signal spectrum is wide enough, the decrease of coherence can be neglected when the 
differential delay is computed. In passive systems for localization, we may have an influ-
ence only on the observation time and not on the widening of the bandwidth. In contrast, 
in active localization systems we can vary both the central frequency and the bandwidth. 
Also, to neutralize the coherence loss, it is necessary to maintain a very large time-band-
width product if the fractional bandwidth is small. Having in mind that the coherence 
threshold is computed based on SNRTHRESH-a, in Fig. 4 we demonstrate the SNR ratio 
threshold dependence on the bandwidth and the observation time. Thus, for the same 
bandwidth of Δω = 2π4rad/s¸ when the observation time is T=1s, the signal/noise ratio 
threshold is SNRTHRESH = 10dB, while for T=2s¸ SNRTHRESH = 20dB. This confirms the 
observation that the increase of the observation time decreases the threshold of SNR.  
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Fig. 3. The value of threshold coherence versus time-bandwidth product for 

Gs / Gn = 10dB 

0 2 4 6 8 10
10

-1

10
0

10
1

10
2

10
3

10
4

Bandwidth [Hz]

f0=16Hz

SN
R

 T
hr

es
ho

ld

T=2s
T=1s

 
Fig. 4. The value of SNR threshold versus signal bandwidth with signal center frequency 

f0 = 16Hz 
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S. Chow and P. M. Schultheiss [17, 18] have shown that the achievable mean-square 
error (MSE) in the ambiguity-dominated region is larger than CRB by factor (ω0 / Δω)2. 
This result suggests the use of the signal envelope as the input to the cross-correlation. 
The signal envelopes do not have ambiguity problems associated with narrow-band sig-
nals. Hence, using them, we can expect to achieve MSE predicted by CRB with signal 
envelopes. To realize this idea, [18] proposes the combination of square-law envelope 
detectors and cross-correlators at the output of each sensor. In contrast, we propose to 
form an analytic signal prior to the computation of the cross-correlation function. This 
way, we prevent the ambiguity problem at the envelopes of correlated signals. In the rest 
of the paper, we will present the main characteristics of analytic signals and the methods 
of their generation. The advantages reached through the use of the signal envelope in 
numeric computation of differential delay are demonstrated on examples of deterministic 
and real acquired sensor signals. 

3. SIGNAL (DATA) MODEL 

Deterministic Analytic signal 

To study in more detail the characteristics of the proposed estimator in the case of re-
alistic and analytic signals, we modeled seismic signals. The seismic signal is modeled by 
deterministic complex exponential signals. The results of the simulated signals are con-
firmed on geophone signals from real-life acquisition. Golden [15] has studied the com-
plex signals with the amplitude and phase functions varying in time. Such modeling has 
found applications in various fields including seismic signal processing. The visual repre-
sentation of the waveforms of both simulated and real-life seismic signals in our system 
is given in Fig. 5 and Fig 6. 
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Fig. 5. The visual representation of the waveform of real-life seismic signal in our 

geophone sensor system. 
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Fig. 6. The waveform of the real part deterministic signal obtained by (18), a0 = jω, 

a1 = 0, a2 = −2α, α = 200 and ω = 2π16rads-1. 

To verify the efficiency of the proposed algorithm on determination of differential 
delay, we simulated seismic signals using the analytic signal. The exponent of the wave-
form of the complex seismic signal can be approximately represented by a finite-degree 
polynomial [15]: 

 
2

0 1 2( ) exp ,
2! !

M

M
t ts t a a t a a

M
⎛ ⎞

= + + + ⋅⋅ ⋅ ⋅ ⋅ +⎜ ⎟
⎝ ⎠

 , 0,1,...,ia C i M∈ =  (17) 

With seismic signals defined this way, the real and imaginary parts of analytic com-
plex signals are related to. The real parts of coefficients of the polynomial (17) define the 
signal envelope, while the imaginary parts specify the signal phase. The main property of 
the analytic signal is that its Fourier transformation is zero for negative frequencies. 
Thus, the complex analytic signal has one-side Fourier transform, in other words, nega-
tive frequencies in the pharos representation of the spectrum are identical to zero. 

The use of the analytic signal makes possible a simple computation of the current am-
plitude and phase values for each moment in time. If we assume that the real part of the 
complex analytic signal is in fact a real sequence identical to acquired real seismic signal, 
then the imaginary part of the complex analytic signal is the adjoin (corresponding) phase 
of the signal. The representation of the sensor signal by complex analytic sequence has 
important advantages in comparison to the presentation of the sensor signal by a real se-
quence, as is the case when "classic" GCC is computed. Namely, according to empirical 
evidence, the cross-correlation function of complex analytic signals is smooth and does 
not have the property of quasi-periodicity, unlike the cross-correlation function of signals 
represented by real sequences. In the presence of noise, the quasi-periodicity of the cross-
correlation function can be a source of potential errors in computation of differential de-
lay. To obtain an adequate simulate complex signal, the degree of the polynomial should 
be as large as possible. To simplify the analysis, here we assume the degree of 2. In our 
paper we apply the simplified analytic signal based on the second degree polynomial in 
the exponent, as follows: 
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 2( , ) exp( ( ) )n n ns t j t t= − −τ ω α τ  (18) 

where sn is the simulated analytic signal of n-th sensor, n = 1,2,3,... is the sensor identi-
fied, τn is absolute delay with respect to the origin in time (t = 0). By comparison of Eq. 
(17 and (18) the complex coefficients in (17) have the following values: a0 = 0 + jω, 
a1 = 0, a2 = −2α + 0j. During the simulation, the values of the parameters are α = 200 and 
ω = 2π16rads-1 and the parameter τn is used to specify signal shifts with respect to the 
origin. By varying this parameter, it is possible to determine the differential delay be-
tween the simulated analytic signals. The pre-specified simulated differential delay 
Δtn+1,n = τn+1 − τn is to be determined using the proposed technique based on the analytic 
signal. In this paper, the results are compared with the differential delay computed using 
the classic cross-correlation method based on both real and analytic signal. When com-
paring the Fourier coefficients for complex analytic and real seismic signals (consisting 
only of the real part of the complex analytic signal), the following can be observed: 

• The real parts of the Fourier coefficients for positive frequencies of complex ana-
lytic signals are double the corresponding real parts of the Fourier coefficients 
signals which have only real components from complex analytic signals. This is 
the consequence of a real sequence representation as a sum of two conjugate com-
plex phases and a complex sequence by only one pharos.  

• The imaginary parts of the Fourier coefficients of a one-side complex analytic sig-
nal are equal to the corresponding imaginary parts of the Fourier coefficients of a 
signal that has only the real component of a complex analytic signal. Real and 
imaginary parts of a complex analytic signal are linked through the Hilbert trans-
formation, so that the signal can be represented by only one pharos. 

Analytic Signal from Real 

The systems for seismic signal acquisition collect real seismic signals in the time do-
main. In [18], the computation of differential time delay using signal envelopes is sug-
gested to prevent the ambiguity problem when the actual peak of the cross-correlation is 
computed. The property of analytic signals to have ideal complex envelopes is used in 
order to accomplish reliable computation of differential time delay. Thus, to apply the 
proposed GCC technique with analytic signals, it is necessary to transform real seismic 
signals into complex analytic signals. The resulting composite (transformed) complex 
analytic signal has a real part identical to the recorded real signal. In order to be analytic, 
the resulting complex signal must have its imaginary part related to its real part. Namely, 
the imaginary part of the analytic signals is the inverse Hilbert transformation of the real 
part of the analytic signal (or, equivalently, of the real part of the analytic signal). Thus, 
the imaginary part of the complex analytic sequence is a version of the original real se-
quence with a phase shift of (π / 2)rad.  

 1( ) ( ) [ ( )]na nr nrs t s t jH s t−= +  (19) 
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where sna(t) is the analytic signal, snr(t) is the real acquired signal and H−1(•)denotes the 
inverse Hilbert transform (in the time domain). This property of the Hilbert transforma-
tion is used to obtain an analytic signal based on the recorded real signal.  

4. EXPERIMENTAL RESULTS  

The estimation of differential delay between signals is performed using the GCC 
technique described in Section II. To simplify the computation, the window function 
from Eq. (6) is defined as: W(ω) = 1. We begin our experimental evaluation on determi-
nistic signals. First, we begin with complex analytic and then with real signals. Real sig-
nals correspond to signals from real-world systems for seismic source signal acquisition 
and localization. Finally, we will demonstrate results obtained on signals recorded in real 
settings. The waveform of the considered simulated complex analytic sensor signal is 
defined by Eq. (17) where the parameters have the following values: a0 = j2π16, a1 = 0, 
a2 = −400 and a3 = ... = aM = 0 (Fig. 6.). By specifying the signal shifts with respect to the 
start of the sequence using the parameter τn for n=1,2, we generate signals s1(t) and s2(t). 
The signals s1(t) and s2(t) have delays with respect to the origin of τ1 and τ2, respectively, 
hence the value of the simulated differential delay between s1(t) and s2(t) is Δt2,1 = τ2 − τ1. 
We assume τ1 = 150 si (sampling intervals), whereas τ2 may take the values from a range 
that simulates the lag or lead of s2(t) with respect to s1(t). In a specific case, when 
τ2 = τ1 = 150 si, the signals are equal (if noise is not present) corresponding to the differ-
ential delay of Δt2,1 = 0. E.g., with τ2 〈 τ1, s2(t) leads with respect to s1(t), so that the dif-
ferential delay is a negative value, Δt2,1 〈 0. Moreover, with τ2 〉 τ1, s2(t) is delayed with 
respect to s1(t), so that the differential delay is a positive value, Δt2,1 〉 0. By simultaneous 
sampling at sampling frequency of real and imaginary part of the analytic signal at the 
sampling frequency fs=1kHz, we obtain a corresponding complex sequence sn(k), 
k=1,2,…N, which represents a sensor signal in the simulation. The parameter N, which 
actually corresponds to the length of the sequence vector, is in this case set to N=1024. 
When in simulation it is necessary to use only a real signal, we can take only the real part 
of the complex sequence. All the values of the parameters τ1 and τ2 are specified as inte-
ger multiples of the sampling interval (sampling period) si. Similarly, the computed val-
ues of the differential delay are specified as multiples of the sampling interval (period). In 
Fig. 7, we present the average absolute error of the computed differential delay Δt2,1 be-
tween signals s1(t) and s2(t) for both real and complex signal representation. The absolute 
delay of signals s1(t) and s2(t) is determined by instant values of τ1 and τ2, respectively. 
The values of these parameters in Fig. 7, are τ1 = const = 150si (sampling intervals), and 
100si ≤ τ2 ≤300si. Such choices of parameter values for τ1 and τ2 cover all characteristic 
relations between s1(t) and s2(t) in time domain (lags and leads). The experiment is per-
formed such that the analytic signals s1(t) and s2(t) are generated for each pair of the pa-
rameters. The signals contain an additive Gaussian noise with zero mean such that SNR= 
10dB. The experiments are repeated one hundred times and for each parameter pair 
[τ1, τ2] the average absolute error of differential delay is computed. 
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Fig. 7. The average absolute error of differential delay Δt2,1 for analytic and real signals 
as function of parameter τ2 (100 runs). 
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Fig. 8. The standard deviation of differential delay for analytic and real signals as 
function of differential delay (100 runs). 

From Fig. 7, we can see that the numerical value of the estimation error Δt2,1 for dif-
ferential delay is very close to zero when τ2 = 150si. This is true both in cases of real and 
complex (analytic) representation of the signal. Further, it can be seen that the mean er-
ror, when the analytic signal representation is used, oscillates around zero and practically 
does not depend on the numerical value of τ2. In contrast, when the real part of the signal 
is used, the error periodically changes the sign and has much larger amplitude. Hence, the 
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advantage of the proposed analytic representation in the differential delay estimation 
between two seismic signals is straightforward. When the actual signal is represented 
solely by the real portion of the analytic signal, from Fig. 7 it is evident that the absolute 
error of differential time delay estimation is much larger (up to 12 si). Such value of the 
absolute error is computed for the following parameter value τ2 ≈ 200si. From Fig. 7, we 
can observe the periodicity of the absolute error, when the signal is represented only by 
its real part. This period of the absolute error is equal to the half of the simulated signal 
period, as it can be seen from Fig. 7. In Fig. 8, we show the standard deviation of the es-
timation error when differential delay is computed in experiments considered in Fig. 7. 
The figure illustrates the results for both real and complex analytic signals. Again, one 
can observe the periodicity of the standard deviation for real signals with respect to the 
true differential delay. This effect of periodicity cannot be observed for the standard de-
viation when the analytic signal is used. 

In the rest of the paper, we analyze the results obtained when the proposed methods is 
applied on real-life signals. The real-life seismic signals are recorded from geophones 
situated in a real geological medium. The geophones are separated in space. The imagi-
nary part of the signals is identically equal to zeros. Real seismic signals are acquired 
from two geophones that were laid on the surface at the same plane, and their distance 
was 20m. On the straight line defined by sensors, there was only one seismic source at 
the distance of 20m from the closer sensor. Signals from both sensors were collected with 
1kHz sampling frequency, while the observation time was 1024 samples in order to apply 
the efficient FFT algorithm to compute the cross-correlation function. An anti-aliasing 
filter with the stopping frequency of 100Hz was at the entrance of the A/D converter.  

In Fig. 9 we display cross-correlation functions of the real acquired signal of a 
geophone. The solid line is used to represent the cross-correlation as obtained by applica-
tion of a classic GCC method with real signals, while the dashed line is used for the 
cross-correlation obtained when the GCC method is applied on complex analytic signals, 
as described in Section III. In these experiments, the differential time delay is determined 
by selection of the dominant peak in the corresponding cross-correlation function. Thus, 
the cross-correlation function which makes possible more reliable determination of the 
dominant peak also provides more confident numerical results of time delay estimation. 
GCC function (Fig. 9.) obtained from the analytic signal has a more clear peak and re-
duced ambiguity problem. The peak of the cross-correlation function is twice as large as 
the peak of the «classic» cross-correlation function, as obvious from Fig. 9. The numbers 
beside the peaks (abscises and ordinates) in Fig. 9, denote the numbers of samples where 
there is a maximal agreement between the observed signals and numerical values of 
peaks. Recall that based on the position of the peak, we can determine the differential 
delay between the signals s1(t) and s2(t). The coordinate of the peak of GCC function ob-
tained with real signals is at sample 903, as well as the coordinate of the peak of the 
function computed using the analytic signals. Hence, in this particular case the two tech-
niques have the same estimated values of time delays and the accuracy of the proposed 
method is preferable. 
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Fig. 9. The shape of the cross-correlation function obtained for experimental signals (the 
classic – solid and analytic-dash signal). 

CONCLUSION  

In this paper, we have described a powerful and efficient technique that applies com-
plex polynomial analytic signals to determine the numerical value of differential delay of 
experimental seismic signals. The technique uses a novel smooth cross-correlation func-
tion that has a significant (dominant) peak and does not involve the use of classical pre-
filters [13]. We have presented a detailed analysis of classic real signals and the proposed 
analytic signals obtained through the Hilbert transformation in the frequency domain. We 
have considered and illustrated the errors when differential delay is computed and we 
have demonstrated the superiority of the proposed technique for the computation of the 
analytic signals cross-correlation. Open research problems are related to the quality of the 
experimental signals at the input, design of a new generation of sensors and simultaneous 
acquisition of all the signals from an active sensor cell with a higher resolution and sam-
pling frequency. In addition, the research of efficient algorithms for source localization 
can significantly improve the applications in systems for real-time passive source local-
ization. Our work in progress with the proposed estimator for the cross-correlation func-
tion of analytical signals is focused on:  

• reduction of the influence of a non-homogeneous geological medium and multi-
path effects on differential delay computation, 

• determination of seismic, sonar and acoustic source trajectories, 
• detection of the number of active sources in the domain of the sensor cell and their 

tracking in real time, 
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• identification and classification of seismic, sonar and acoustic sources, 
• determination of the optimal geometry of the sensor cell network of spatially 

separated geophones and 
• optimization of inter-sensor and inter-network communication needs for source 

localization by the collaborative sensor arrays. 
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PRIMENA KOMPLEKSNIH ANALITIČKIH SIGNALA U 
IZRAČUNAVANJU VREMENSKOG KAŠNJENJA 

Zoran S. Veličković, Vlastimir D. Pavlović 

U ovom radu je prezentovan koncept izračunavanja diferencijalnog kašnjenja koji je zasnovan 
na transformaciji realnog senzorskog signala u analitički. Analizirane su vrednosti dobijenih 
diferencijalnih kašnjenja za realni seizmički signal, simulirani kompleksni analitički signal i 
simulirani kompleksni analitički signal čiji realni deo odgovara akviziranom realnom signalu. 
Simulacioni rezultati pokazuju da se primenom kompleksnog analitičkog signala dobijaju 
pouzdanije vrednosti diferencijalnog kašnjenja. Analiziran je uticaj specifičnih parametara signala 
na prag koherence u sistemima za pasivnu lokalizaciju i preporučeni su metodi za njeno 
snižavanje. Diferencijalno vreme kašnjenja je određeno u odnosu na referentni senzor (geofon) 
primenom GCC metoda nad analitičkim signalima. Poteškoće oko određivanja pika kros-
korelacione funkcije kod realnih signala, koji odgovara tačnom diferencijalnom kašnjenju, su 
znatno redukovane primenom GCC metoda nad analitičkim signalima. Efikasnost predložene 
tehnike je ispitana na determinističkim i realnim signalima. 




