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Abstract. The instabilities of the quasi-perpendicular electrostatic (δB = 0) ion-
cyclotron waves (QPESIC) are investigated. The kinetic theory with BGK model 
collision integrals is used to estimate the critical electron drift velocity in the presence 
of positively or negatively charged resonant ions in multi-component plasma. Analytical 
evaluation for the ion-cyclotron modes and instabilities in the long-wave range in a 
weakly-ionized Maxwellian plasma with two positive ion species, one negative ion 
species and with electrons, drifting along magnetic lines of force is demonstrated. The 
spectrum in these situations is also given. It is shown that the critical drift decreases as 
the state of plasma approaches the isothermic state. 
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1. INTRODUCTION 

Analyzing the waves in weakly ionized plasmas received much attention in the last 
decades due to the technical simplicity of obtaining this kind of plasma and correspond-
ing low relative temperatures. Density of such plasmas is rather low, as well as the colli-
sion frequencies. For analysis we used a linear kinetic theory, giving the possibility of 
studying thermal effects, collision processes, excitation of higher harmonic ion cyclotron 
waves, etc. 

In a majority of cases, new waves are created when the angle θ, between the wave 
vector k and the external magnetic field B0, is near π/2 [10]. Frequencies in these free 
waves for k → 0 and  k → ∞  are close to n |ωBα|, where n is an integer, and ωBα are gyro 
frequencies for each ionic species α. Those waves are called ion cyclotron, and their ex-
istence is the consequence of the resident magnetic field. 

Potential cyclotron waves are not followed by perturbations of magnetic field (just by 
an electric field oscillating) and because of that they are often called electrostatic. For the 
first time potential electron cyclotron waves were studied [1]. The existence of ion cy-
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clotron oscillations is the result of superposition of electromagnetic fields which emit 
single ions in the process of cyclotron rotation in external magnetic field. Electrostatic 
cyclotron waves appear in plasma for the small value of kρLi. If kρLi is too big, then ion 
cyclotron waves become non-potential. 

This study is based on the assumption of infinite, weakly ionized, low-temperature, 
collision plasma, placed in a mutually parallel field E0 and B0 [11-14]. The multi-compo-
nent plasma contains electrons, neutrals, one kind of negative ions (h), and two kinds of 
positive ions (l1 and l2). Plasmas with negative ions are encountered both in laboratory 
devices [4,7], and in astrophysical situations [5, 8]. 

2. THEORY 

The condition of macroscopic quasi-neutrality for such plasma is: 

                                                    
1 21 2 ,e h l ln zn z n z n+ = +  (1) 

where ne, nh , nl1, nl2 are number densities for electrons, negative ions and two species of 
positive ions, respectively, and z , z1, z2 are their charges. We use the subscripts e for 
electrons, h for negative ions, and l1 and l2  for positive ions. 

It is convenient to introduce the following parameters: 
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Parameters in Eq. (2) are the ratios of the number densities of positive ions and 
electrons. Equations (3) and (4) represent the ratios of the relative temperatures and 
masses for negative ions refer to electrons and positive ions. 

From the condition of macroscopic quasi-neutrality we have: 
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Dispersion equation for the electrostatic waves is in general [3]: 

                                                            1 0,α
α

+ δε =∑  (8) 
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where δεα (α = e, h, l1, l2) designate the contributions of the plasma constituents to the 
longitudinal permeability [9,10]. We can reject figure one because it is very small com-
pared to the mentioned contributions, so equation (8) became: 

                                                  
1 2

0.e h l lδε + δε + δε + δε =                                               (9) 

Dynamics for this kind of plasma is described by the kinetic theory in which collision 
processes are calculated with BGK model collision integrals. 

In the long wave domain of the modes considered (νe >> k||νTe and ωνe << k||
2ν2

Te), the 
electron contribution to (8) is given by [3]: 
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Here u is the electron drift velocity (assumed constant), νe is the effective collision 
frequency for electron-neutral collisions, νTe = (κTe/me)1/2 is the thermal velocity of 
electrons (κ is the Boltzmann constant), and ωpe = (e2ne / ε0me)1/2 is the electron plasma 
frequency.  

The simplifications in δεi (i = h,l1,l2) are based on the conditions of quasi-
perpendicular propagation, i.e. ω, |ω − nωBi| >> k||νTi,νi . For Maxwellian ion steady-state 
distribution functions, one thus arrives at: 
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The quantities ωpi, ωBi, νTi  and νi have the same meaning as the analogous quantities in 
(10), and An(z) = In(z)exp(−z) (In is the modified Bessel function of order n). We must 
accept that ionic drift velocity is irrelevant.  In concrete calculations for resonant ions, in 
the sum (11), we take, as the biggest ones, those members [12] with n = 0, 1, and for non-
resonant ions the member n = 0.  Resonant ions have cyclotron frequency close to modal 
frequency of the analyzed waves. 

In this case: 
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The spectra of studied wave modes are determined when we equalize the real part of 
(9) with zero. Drift velocity for electron u along magnetic field B0, leading to spontane-
ous excitation of potential ion-cyclotron waves, follows from the condition marginal in-
stability, obtained by equating the imaginary part of (9) with zero. The critical drift ve-
locity would be evaluated relating to thermal velocity of negative ions. 

In the next part, we study situations: 
A. Negative ions are resonant (ω ≈ ωBh)  
B. Positive ions of first kind are resonant (ω ≈ ωBl1)  
C. Positive ions of second kind are resonant (ω ≈ ωBl2). 
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A. Negative ions are resonant (ω ≈ ωBh) 

Dispersion equation in this case is: 
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From this equation, we get the expression for the modal frequency: 
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The process of spontaneous excitation of electrostatic ion-cyclotron waves is determined 
by the critical velocity of electron drift. 

The ratio of the critical drift velocity and thermal velocity of negative ions is given by 
the equation: 
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Here, W = (ω − ωBh) / ω is the relative deviation of ω from ωBh. 

Collision of charged particles with neutrals plays the most important role in the 
weakly ionized plasma. The collision frequencies can be calculated according to the bil-
liard-ball model and they are given by the following relation: 

 n n Tn vα α αν = σ , (21) 

where nn is the number densities of neutrals and σαn is the effective cross-section for 
collision of charged particles with neutrals. 

According to the billiard-ball model (σen = σαn) used for the collisions herewith, one has:  
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thus,  the drift equation becomes: 
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where: 
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B. Positive ions of first kind are resonant (ω ≈ ωBl1)  

In this case dispersion equation is: 
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From this equation, the expression for the spectrum is obtained: 
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Critical drift velocity for the first term in the billiard-ball model is defined by: 
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with parameters: 
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Here, W = (ω − ωl1) / ω is the relative deviation of ω from ωBl1. 
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Equation can be expressed in the following way: 
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Finally, critical drift velocity, when positive ions are resonant, in respect to the thermal 
velocity of negative ions, has the form: 
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C. Positive ions of second kind are resonant 

2
( )Blω ω≈  

In this case dispersion equation is: 
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Therefore, we obtain: 
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The critical drift velocity for the first term in the billiard-ball model is: 
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Here, W2 = (ω − ωl2) / ω is the relative deviation of ω from ωl2. 

Now we have: 
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Hence, in this case, we arrive to the following expression: 
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Secondly, we shall analyze the mentioned modes. 

3. NUMERICAL APPLICATIONS 

In previous laboratory investigation [4], SF6
− negative ion was taken together with one 

kind of positive ions. In this paper we shall consider the plasma containing SF6
− and two 

kinds of positive ions K + and H2
+ as well as electrons and neutrals. Taking into account 

that the number densities of the negative, both kinds of positive ions and electrons are 
approximately equal, the parameters δ1 and δ2  become equal to one. Also, if we take that 
the temperatures of the ions are equal, we have that T1 = T2 = 1. For such a case, one 
obtains M = 268056, M1 = 3.73 and M2 = 73. 
 

 
 

Fig. 1. Dependence of ion-cyclotron waves on µh and T in case negative 
ions SF6

− are resonant. 
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Fig. 2. Dependence of ion-cyclotron waves on µh and T in case positive ions 

K + are resonant. 

 

 
Fig. 3. Dependence of ion-cyclotron waves on µh and T in case positive ions 

H2
+ are resonant. 
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Fig. 4. Dependence of electron critical drift velocity on µh and T in case 

negative ions SF6
− are resonant. 

 
 

 
Fig. 5. Dependence of electron critical drift velocity on µh and T in case 

negative ions K + are resonant. 
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Fig. 6. Dependence of electron critical drift velocity on µh and T in case 

negative ions H2
+ are resonant. 

4. CONCLUSIONS   

We notice that the deviation of ω from ωBh greatly depends on the relation between 
the masses of the positive resonant ion and the negative ion. The bigger amount of nega-
tive ions, the less the deviation. This is in accordance with the observation in paper [6], 
where the potential ion cyclotron waves are treated by non-collision theoretical approach. 
The dependence of the spectrum on T is such that the discrepancy of ω from ωBh de-
creases as the value of  T approaches to one (isothermal plasma). 

It is shown that it is more difficult to excite the potential ion cyclotron waves with 
positive resonant ions. We have also shown that the resonant QPEIC is easier to excite as 
more charges is carried [4,6]. The results of analysis of two kinds of ions in plasmas can-
not be accurately compared with experiment, because collisions need to be considered. 
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KINETIČKA TEORIJA ELEKTROSTATIČKIH   
JONO-CIKLOTRONSKIH TALASA (QPEIC)  
U MULTI-KOMPONENTNIM PLAZMAMA  

SA NEGATIVNIM JONIMA  

Darko Simić, Dragan Gajić 

Razmatrane su nestabilnosti kvazi-perpendikularnih elektrostatičkih (δB=0) jono-ciklotronskih 
talasa.Pomoću kinetičke teorije sa BGK kolizionim integralom izračunavana je brzina kritičnog 
elektronskog drifta u prisustvu pozitivnih ili negativnih rezonantnih jona u multi-komponentnim 
plazmama. Prezentovano je analitičko izračunavanje za jon-ciklotronske mode i nestabilnosti u 
dugotalasnoj oblasti za slučaj slabo jonizovane maksvelovske plazme sa dve vrste pozitivnih jona, 
jednom vrstom negativnih jona i elektronima koji driftuju u odnosu na linije sile magnetnog polja. 
Izračunavan je i spektar u ovim situacijama. Pokazano je da brzina kritičnog drifta elektrona 
opada sa približavanjem plazme izotermnom stanju. 


