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Constrained generalized supersymmetries and their classification.

Francesco Toppan

CBPF, Rio d. J., Brazil

Abstract. Generalized superymmetries going beyond the HLS scheme
and admitting the presence of bosonic tensorial central charges are con-
structed and classified in terms of the division algebras R, C, H and
O. The eleven-dimensional M -algebra falls into this class of super-
symmetries. Division-algebra compatible constraints can be introduced
and fully classified. They can be used to construct and analyze various
dynamical systems, the simplest examples being the superparticles with
tensorial central charges which generalize the Rudychev-Sezgin and the
Bandos-Lukierski models.
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1. INTRODUCTION

The generalized supersymmetries going beyond the Haag, ÃLopuszański
and Sohnius classification [1] were first introduced by D’Auria and Fré in
1982 [2]. The fermionic supersymmetry generators are, essentially, square
roots operators. Their anticommutators produce a r.h.s. which is totally
saturated and has to be expanded in terms of higher-rank bosonic tensors.
It was recognized, see e.g. [3] and [4], that such supersymmetries are related
with the dynamics of extended objects like branes.

The eleven-dimensional M -algebra, given by

{Qa, Qb} = (AΓµ)ab Pµ +
(
AΓ[µν]

)
ab

Z [µν] +
(
AΓ[µ1...µ5]

)
ab

Z [µ1...µ5].

(1)

is an example of such a generalized supersymmetry. We recall that, in
Minkowskian eleven dimensions, the fundamental spinors are 32-component,
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real (Majorana) spinors. The saturated bosonic r.h.s. is in this case given by
the most general 32×32 symmetric matrix with 528 bosonic real components,
expressed in terms of 11 vectors, 55 rank-two and 462 rank-5 antisymmetric
tensors (11 + 55 + 462 = 528).

The “generalized momenta” Pµ, Pµν , Pµ1...µ5 entering the (1) r.h.s. can
be associated to “generalized coordinates” Xµ, Xµν , Xµ1...µ5 , while the su-
persymmetry generators Qα should be associated to the Grassmann super-
space coordinates θα. This kind of structure can be used to introduce a class
of models, first produced by Rudychev and Sezgin in [5], known as “superpar-
ticles with tensorial central charges”. These models realize a generalization
of the Brink-Schwarz superparticle since they allow the presence of bosonic
tensorial coordinates. It was later proved by Bandos and Lukierski in [6], see
also [7], that a different formulation of the Rudychev-Sezgin models in terms
of complex generalized superalgebras (the basic ingredients being complex
supersymmetric charges), describes towers of massless particles with higher
helicities. A previous proposal by Fronsdal [8] of using tensorial coordinates
to produce a tower of higher spin particles was concretely implemented in
the Bandos-Lukierski framework. In this talk we discuss the following items.
We point out at first that, since spinors can be introduced in association with
each one of the four division algebras (real and complex numbers, quater-
nions and even the non-associative algebra of the octonions), see e.g. [9],
generalized supersymmetries can be introduced in association with each one
of the above division-algebras in each space-time supporting the correspond-
ing spinors. Later, division-algebras compatible constraints on the bosonic
r.h.s. can be produced [10] and classified [11]. An immediate application of
the classification of the (constrained) generalized supersymmetry concerns
the construction of generalizations of the Bandos-Lukierski models and the
analysis of their equations of motion, with the possibility of introducing
dynamically-compatible constraints. In the Conclusions some other exam-
ples of dynamical systems currently under investigation, which are based on
the present classification of (constrained) generalized supersymmetries, will
be mentioned.

2. Division algebras and generalized supersymmetries

The four division algebra of real (R) and complex (C) numbers, quater-
nions (H) and octonions (O) possess respectively 0, 1, 3 and 7 imaginary
elements ei satisfying the relations

ei · ej = −δij + Cijkek, (2)
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(i, j, k are restricted to take the value 1 in the complex case, 1, 2, 3 in the
quaternionic case and 1, 2, . . . , 7 in the octonionic case; furthermore, the sum
over repeated indices is understood).

Cijk are the totally antisymmetric division-algebra structure constants.
The octonionic division algebra is the maximal, since quaternions, complex
and real numbers can be obtained as its restriction. The totally antisym-
metric octonionic structure constants can be expressed as

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1 (3)

(and vanishing otherwise). The fact that the structure constants are anti-
symmetric implies that the anticommutators between imaginary elements is
a specific realization of the basic relation of the Euclidean Clifford algebra
ΓiΓj + ΓjΓi = −2δij . As a result, matrices with division-algebra valued en-
tries satisfying the basic relations of Clifford algebras in different space-times
can be produced [9]. They act on corresponding, division-algebra valued,
spinors. The generalized supersymmetries are known as “real”, “complex”,
“quaternionic” or “octonionic” according to the nature of the supersymme-
try charges.

If the real spinors Qa have n components, the most general supersym-
metry algebra is represented by

{Qa, Qb} = Zab, (4)

where the matrix Z appearing in the r.h.s. is the most general n × n sym-
metric matrix with total number of n(n+1)

2 components. For any given space-
time we can easily compute its associated decomposition of Z in terms of
the antisymmetrized products of k-Gamma matrices, namely

Zab =
∑

k

(AΓ[µ1...µk])abZ
[µ1...µk], (5)

where the values k entering the sum in the r.h.s. are restricted by the
symmetry requirement for the a ↔ b exchange and are specific for the given
spacetime. The coefficients Z [µ1...µk] are the rank-k abelian tensorial central
charges.

In the above formula the matrix A is the generalization of Γ0, needed to
introduce barred spinors. Another useful matrix is the charge conjugation
matrix C, which is used in order to construct rank-k antisymmetric tensors
which are all hermitian or antihermitian in the a ↔ b exchange (see [9] for
details). When the fundamental spinors are complex or quaternionic (let
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us limit ourselves to discuss this associative case, but the generalization to
octonionic spinors can be made, see [9]) they can be organized in complex
(for the C and H cases) and quaternionic (for the H case) multiplets, whose
entries are respectively complex numbers or quaternions.

The real generalized supersymmetry algebra (4) can now be replaced by
the most general complex or quaternionic supersymmetry algebras, given by
the anticommutators among the fundamental spinors Qa and their conjugate
Q∗

ȧ (where the conjugation refers to the principal conjugation in the given
division algebra. We have in this case

{Qa, Qb} = Pab ,
{
Q∗

ȧ, Q
∗
ḃ

}
= P∗ȧḃ, (6)

together with

{
Qa, Q

∗
ḃ

}
= Raḃ, (7)

where the matrix Pab (P∗ȧḃ is its conjugate and does not contain new degrees
of freedom) is symmetric, while Raḃ is hermitian.

The maximal number of allowed components in the r.h.s. is given, for
complex fundamental spinors with n complex components, by
ia) n(n+1) (real) bosonic components entering the symmetric n×n complex
matrix Pab plus
iia) n2 (real) bosonic components entering the hermitian n × n complex
matrix Raḃ.

Similarly, the maximal number of allowed components in the r.h.s. for
quaternionic fundamental spinors with n quaternionic components is given
by
ib) 2n(n+1) (real) bosonic components entering the symmetric n×n quater-
nionic matrix Pab plus
iib) 2n2−n (real) bosonic components entering the hermitian n×n quater-
nionic matrix Raḃ.

The previous numbers do not necessarily mean that the corresponding
generalized supersymmetry is indeed saturated. This is in particular true in
the quaternionic case. Some further remarks are in order. We can expand
the r.h.s. of (6) and (7) in terms of the antisymmetrized product of Gamma
matrices only when the division-algebra character of the Gamma matrices
coincides with the division-algebra character of spinors.

3. Constrained generalized supersymmetries
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In this section we investigate and classify the set of consistent constraints
that can be imposed on the complex generalized supersymmetries.

Saturated complex generalized supersymmetries (i.e. the ones admitting
as bosonic r.h.s. both the most general symmetric matrix P entering (6) and
the most general hermitian matrix R entering (7)) contain the same number
of bosonic degrees of freedom as the corresponding saturated generalized su-
persymmetries realized with real spinors. In this respect the big advantage of
the introduction of the complex formalism, whenever this is indeed possible,
consists in the implementation of some constraint that cannot be otherwise
imposed within the real framework.

In [10] the two big classes of hermitian and holomorphic generalized
supersymmetries were introduced and discussed. This result was further
extended [11] with a presentation of a whole new class of division-algebra
related constraints that can be consistently imposed. The bosonic r.h.s. can
be expressed in terms of the rank-k totally antisymmetric tensors (denoted
as Mk). It is clear that any restriction on the saturated bosonic gener-
ators which allows all possible combinations of the rank-k antisymmetric
tensors entering the r.h.s. is in principle admissible by a Lorentz-covariant
requirement. It is worth noticing that we are limiting our discussion on
the generalized supersymmetries which can be loosely denoted as “gener-
alized supertranslations”, see [10]. Supersymmetries of this kind present
no Lorentz generators. However, they can be regarded as building blocks
to construct superconformal algebras, out of which the generalized super-
Poincaré algebras, admitting Lorentz subalgebras, can be recovered through
an Inonü-Wigner type of contraction. It requires the introduction of two
separated copies of “generalized supertranslations”. The implementation of
super-Jacobi identities is sufficient to detect the remaining generators and
close the whole set of algebraic relations defining the associated supercon-
formal algebra. Therefore, all the information about such superconformal
algebras is already contained in the generalized supertranslations, the sub-
ject of the present investigation and classification. On the other hand few
particular combinations of the rank-k antisymmetric tensors have more com-
pelling reasons to appear than just arising as a hand-imposed restriction on
the saturated bosonic r.h.s. They can indeed be present due to a division-
algebra constraint based on an underlying symmetry. It is expected that
restrictions of this type offer a protecting mechanism towards the arising of
anomalous terms, in application to the supersymmetries realized by certain
classes of dynamical systems. This is an important reason to analyze and
classify these constraints. Their whole class is presented in the table below.
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It consists of all possible combinations of restrictions on the P, R matrices
of (6) and (7) (e.g. whether both of them are present or just one of them,
if a reality or an imaginary condition is applied). The entries in the table
below specify the number of bosonic components (in the real counting) asso-
ciated with the given constrained supersymmetry realized by n-component
complex spinors. The columns represent the restrictions on R, the rows the
restrictions on P (an imaginary condition on P is equivalent to the reality
condition and therefore is not reported in the table below). We have

P\R 1) Full 2) Real 3) Imag. 4) Abs.

a) Full 2n2 + n 3
2(n2 + n) 1

2(3n2 + n) n2 + n

b) Real 1
2(3n2 + n) n2 + n n2 1

2(n2 + n)
c) Abs. n2 1

2(n2 + n) 1
2(n2 − n) 0

(8)

Some comments are in order. The above list of constraints is not neces-
sarily implemented for any given supersymmetric dynamical system. One
should check, e.g., that the above restrictions are indeed compatible with
the equations of motion. On a purely algebraic basis, however, they are
admissible restrictions which require a careful investigation.

One can notice that certain numbers appear twice as entries in the above
table. This is related with the fact that the same constrained superalgebra
can admit a different, but equivalent, presentation. We refer to these equiv-
alent presentations as “dual formulations” of the constrained supersymme-
tries. Dual formulations are expected in correspondence of the constraints

a3 ↔ b1,

a4 ↔ b2,

b3 ↔ c1,

b4 ↔ c2. (9)

It is worth stressing that in application to dynamical systems, which need
more data than just superalgebraic data, one should explicitly verify whether
the above related constraints indeed lead to equivalent theories.
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The inequivalent constrained generalized supersymmetries can be listed
as follows

I (a1) 2n2 + n, k = 3, l = 1
II (a2) 3

2(n2 + n), k = 3, l = 0
III (a3& b1) 1

2(3n2 + n), k = 2, l = 1
IV (a4& b2) n2 + n, k = 2, l = 0
V (b3& c1) n2, k = 1, l = 1
V I (b4& c2) 1

2(n2 + n), k = 1, l = 0
V II (c3) 1

2(n2 − n), k = 0, l = 1

(10)

The integral numbers k, l have the following meaning. For the given con-
strained supersymmetry the bosonic r.h.s. can be presented in the following
form

Z = kX + lY, k = 0, 1, 2, 3, l = 0, 1, (11)

where X and Y denote the bosonic sectors associated with the V I and
respectively V II constrained supersymmetry.

In association with the maximal Clifford algebras in D-dimensional space-
times (with no dependence on their signature), the X and Y bosonic sectors
are given by the following set of rank-k antisymmetric tensors

X Y

D = 3 M1 M0

D = 5 M2 M0 + M1

D = 7 M0 + M3 M1 + M2

D = 9 M0 + M1 + M4 M2 + M3

D = 11 M1 + M2 + M5 M0 + M3 + M4

D = 13 M2 + M3 + M6 M0 + M1 + M4 + M5

(12)

Formula (11) specifies the admissible class of division-algebra related,
constrained bosonic sectors.

4. Real superparticles with tensorial central charges
Let us at first introduce the superparticle models with tensorial central

charges, based on real generalized supersymmetries. It consists of an ex-
tension of the first-order formalism of Brink-Schwarz used to formulate the
ordinary massless superparticles.
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The most general action S involving real spinors is constructed as follows
[5] in terms of the real superspace coordinates Xab, Θa conjugated to the
superalgebra generators Zab and Qa of (4) (Xab is symmetric in the a ↔ b
exchange). We have

S =
1
2

∫
dτtr

[
Z ·Π− e(Z)2

]
, (13)

where

Πab = dXab −Θ(adΘb), (14)

while eab denotes the Lagrange multipliers whose (anti)symmetry property
is the same as the one of the charge conjugation matrix Cab, i.e.

eT = εe for CT = εC. (15)

By construction

(Z)2ab = ZacC
cdZdb, (16)

namely the charge conjugation matrix is used as a metric to raise and lower
spinorial indices.

The massless constraint

(Z)2ab = 0 (17)

is obtained from the variation δeab of the Lagrange multipliers.
A symmetric charge conjugation matrix (ε = 1) allows us [5] to construct

a massive model by simply performing a shift Z → Z + mC in the action
(13).

5. Complex superparticles with tensorial central charges
As discussed before, constrained generalized supersymmetries can be in-

troduced for spinors which are at least complex. In order to introduce the
action for the superparticle with complex spinors we should mimick, as much
as possible, the real formulation. The bosonic matrix Zab is now replaced
by the pair of matrices Pab and Raḃ (respectively symmetric and hermitian)
entering (6) and (7). They can be accommodated in a symmetric matrix P
(PT = P) as follows

P =

(
P R
R∗ P∗

)
. (18)
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The supercoordinates conjugated to Pab, Raḃ, Qa and Q∗
ȧ are given by

Xab, Y aḃ, Θa and Θ∗ȧ.
It is convenient to use the notation

Π =

(
dX −ΘdΘ dY −ΘdΘ∗

dY ∗ −Θ∗dΘ dX∗ −Θ∗dΘ∗

)
. (19)

We will also need the matrix

P2 = PCP, (20)

whose indices are raised by the metric C. There are three inequivalent avail-
able specific choices for C which are discussed below. The (anti)-symmetry
property of P2 coincides with the (anti)-symmetry property of C.

The Lagrange multipliers enter a matrix

E =

(
e f
g h

)
. (21)

In general, for any U (for our purposes U ≡ P2) s.t.

U =

(
U V

λµV ∗ U∗

)
(22)

with UT = λU , V † = µV (therefore UT = λU), the reality of the term
tr(EU) requires

g = λµf∗,
h = e∗. (23)

A reality (imaginary) condition imposed on either U or V implies a reality
(imaginary) condition for the lagrange multipliers e and f respectively.

We are now in the position to write the action S for the superparticle
with bosonic tensorial central charges and complex spinors as

S =
1
2

∫
dτtr

[
PΠ−E(P)2

]
. (24)

As in the real case, a massive model can be introduced in correspondence of
a symmetric C through the shift P → P + mC in the action (24). For what
concerns the metric C, it has to be of the same form as P (see (18)) entering
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the action (24), with an upper-left (anti)symmetric block and an upper-
right (anti)hermitian block. More specifically, C should be presented as in
formula (22), in terms of two (an (anti)symmetric and an (anti)hermitian)
scalar matrices respectively denoted as U and V . Since U and V are both
scalars, their available choices are therefore given by U ≡ C̃, V ≡ Ã, where,
essentially, see [11] for details, C̃ denotes the charge-conjugation matrix C
and Ã the generalization of Γ0.

It is convenient to denote with ε, δ = ±1 (C̃T = εC̃, Ã† = δÃ) the
(anti)symmetry and (anti)hermitian properties of C̃, Ã respectively.

Without loss of generality, three possible choices for C are at disposal.
They are given by

i)

C =

(
C̃ 0
0 C̃∗

)
, (25)

in this case C is (anti)symmetric in accordance with the sign of ε;
ii)

C =

(
0 Ã

ξÃ∗ 0

)
, (26)

where ξ is an arbitrary sign (ξ = ±1); in this case the (anti)symmetry
property of C is specified by the sign of δξ;

iii)

C =

(
C̃ Ã

εδÃ∗ C̃∗

)
, (27)

the (anti)symmetry property of C is specified by the sign of ε. It should be
noticed that in this last case an (anti)symmetric matrix P2 ( P2 = PCP) is
only possible, for both non-vanishing P, R entering P, if the condition

ε = δ (28)

is matched.
The above three sets of choices for C completely specify the available

actions for the superparticles with tensorial central charges and complex
spinors.

6. Constrained superparticles with tensorial central charges
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The analysis of the constrained generalized supersymmetries can be ap-
plied to the dynamics of the complex superparticles. The equations of motion
of this class of models can be easily derived from the action (24). It is suffi-
cient here to present the constraints arising from the variations δe, δf of the
lagrange multipliers entering (24). Such constraints will be denoted with the
symbols “X”and “Y ”, respectively. In correspondence with the three above
choices for C we get the following constraints
i)

X = PC̃P +RC̃∗R∗ = 0,

Y = PC̃R+RC̃∗P∗ = 0; (29)

ii)

X = ξRÃ∗P + PÃR∗ = 0,

Y = ξRÃ∗R+ PÃP∗ = 0; (30)

iii)

X = PC̃P + εδRÃ∗P + PÃR∗ +RC̃∗R∗ = 0,

Y = PC̃R+ εδRÃ∗R+ PÃP∗ +RC̃∗P∗ = 0. (31)

The analysis now goes as follows. One can check whether the constrained
generalized supersmmetries indeed apply to the the different classes of com-
plex superparticles models (i.e., whether the constraints are compatible with
the equations of motion) and whether the duality relations between con-
strained generalized supersymmetries are indeed satisfied in the dynamical
setting. The detailed list of results is rather complicated and has been pre-
sented in [11].We will not report it here in full generality. Instead, we are
limiting ourselves to furnish a table specifying, in association with the given
choices of C the dynamical compatibility of the constraints discussed and
introduced above for generic choices of the spacetimes. We get

i ii iii

I yes yes yes

IV (a4) yes yes no

IV (b2) yes yes yes∗ (ε = 1)
V (b3) yes yes yes∗ (ε = 1)
V (c1) yes yes no

V I (b4) yes∗ (ε = −1) yes no

V I (c2) yes∗ (ε = −1) yes no

V II yes∗ (ε = −1) yes no

(32)
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The “∗” denotes which choices are consistent only for a specific value of ε.

7. Conclusions

The understanding of generalized supersymmetry is of preliminary, cap-
ital importance, for investigating the dynamical content of the M -theory,
which should be based on a particular example of generalized supersymme-
try, the so-called M algebra. We pointed out that generalized supersym-
metries can be classified according to their division-algebra property. We
can therefore speak of real, complex, quaternionic and even octonionic gen-
eralized supersymmetries. In the real case the conjugation acts trivially as
the identity operator. In the remaining cases, however, the conjugation acts
non-trivially and allows to reexpress the single generalized superalgebra re-
lation as three separated relations (two of them mutually conjugated). On
these relations we saw that we can impose on the bosonic r.h.s. division-
algebra compatible constraints. We are therefore allowed to speak of con-
strained generalized supersymmetries. We have further seen that, in several
cases which have been listed, the one and the same constrained generalized
supersymmetry can be presented in different, dual, formulations. The classi-
fication of these superalgebras, presented in [11], was reviewed. Generalized
supersymmetries should appear as symmetry algebras of the M -theory, see
e.g. [12]. It is therefore quite important to analyze some given examples
of dynamical models based on generalized supersymmetries. Within our
framework we reformulate the superparticles with tensorial central charges,
first introduced by Rudychev-Sezgin and, in a complex formalism case, by
Bandos-Lukierski. We proved that complex tensorial superparticles admit
three different inequivalent formulations associated with the choices of the
metric used to raise and lower the spinorial indices. We finally investigated
under which conditions the constraints on generalized supersymmetries can
be consistently applied on the equations of motion of the associated tenso-
rial superparticle models. We should mention that there are at least two
other classes of systems, which are currently under investigation, that can
be analyzed in the framework here presented. The first class of dynamical
systems corresponds to the tensionless strings and branes, see [13]. The
division-algebra framework for generalized supersymmetries can provide the
consistency conditions for the existence of these models (the so-called brane-
scans). Another very important class of models, somehow “orthogonal” to
the tensorial superparticles (since they they admit only particles with spin
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less or equal than two) is given by the higher-dimensional Chern-Simon su-
pergravitiesin any given odd dimension, whose possible relation with the
M -theory has been pointed out in [14].
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