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Abstract. The open bosonic string is placed in gravitational G, , an-
tisymmetric By, and linear dilaton field ® = ®g+a,z". We investigate
here the contribution of the background fields to the noncommutativity
parameter in two cases: a® # 0 and a®> = 0. We consider the bound-
ary conditions like constraints and use the canonical method. The case
a® # 0 is equivalent to the dilaton free case formally. In the second case
a first class constraint appears and it generates a local Weyl symmetry.
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1. INTRODUCTION

At the beginning we define the model introducing the action. The exact
solution exists in the case when G, and B, are constant fields and the
dilaton field is linear. The crucial technical point is extension of the space
time i.e. adding of the conformal part of the intrinsic metric F' to the
coordinate z*. In this way we transform the starting action into the form
of the dilaton free case. The vector a, can be either light cone or not.

The case when the dilaton field gradient is not light cone vector is the
subject of the next section. It is almost like dilaton free case. There is one
commutative coordinate and that is x = a,z".

In the second case it turns out there is a first class constraint(FCC) in
the theory. According to the Dirac theory of the constrained systems, the
FCC generates the local symmetry. We recognize easily the two dimensional
Weyl symmetry. The action is the same as dilaton free one formally, but
expressed in terms of the gauge invariant variables.

At the end we gave some concluding remarks.
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2. STRING THEORY WITH THE DILATON FIELD
2.1. DEFINITION OF THE MODEL
Let us consider the open string action given by the following expression:

gfB

V=g

where G, () is the space-time metric, B, (x) is antisymmetric tensor field,
®(z) is dilaton field and R® is scalar curvature of the two dimensional
world-sheet. Here, {%(a = 0,1) are coordinates of the world-sheet ¥ and
z# (p=0,1,2,...,D — 1) are coordinates of the space-time M. Metric g,g
is intrinsic world-sheet metric . We use the following notation in the whole
article: 0, = %, Oy = 8%” @ =71and ¢ =0 (0 €0,7)).

We use the conformal gauge gng = e Nag. For simplicity, we split the
space-time coordinates z* in the Dp-brane part 2% (i = 0,1, ...,p) and the
rest 2% (a=p+1,p+2,...,D—1). The background fields are chosen in the
following way:

1
S =k /E d’¢v/=g { lggaﬂGW + £ B | Oua05e + <I>R(2)} (1)

B, — Bjj a, — a; (2)
Guw=0 p=i€{0,1,..,p} v=ac{p+1,.,D—-1} (3)

where a, = 0,®.
If we aplly these conventions we split the action (1) in the free theory
action (z¢ directions) and the action (4) interesting for our further analysis

1 . .
Sy = /@/Z d*¢ Kf]aﬁGij + eaﬁBij>8ax185:v] + 2770‘[3(1,8@:6’85}7 Y

2.2. SOLUTION OF THE SPACE-TIME EQUATIONS
The condition for preserving the Weyl symmetry on the quantum level
represents the next set of conditions

1
Bia = Ruv = 1 Bupo B + 2Dyay, = 0 (5)
Y = D,Bf, —2a,B0, =0 (6)
D — 26 1
B = dmi—o= = Rt 5 Bupe B — ADya + 4> =0 (7)

a, = 0,®, B,y is field strength of the field B,,, .
When G, (z) and By, (x) are constant fields and dilaton field is linear

®(x) = o + a,x*, there is an exact solution and that is a’ = fm@.
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2.3. EXTENDING OF THE SPACE-TIME
We introduce the coordinates y* = (2%, F') and the fields

_ Gz‘j 2ai o Bij 0
GAB_(zaj o) Ba=l 00)
The action (4) gets the form of the dilaton free action:

1
Sy = fi/ dzf[QﬁaﬁGAB +e"Bap|0ay” 0sy”
>

3. CASE a> #0
3.1. BASIC QUNTITIES
When a? # 0, there is an inverse matrix of Gap

a1
2a? 4a?

GAB — (G—I)AB — ( PTZ! 201;2 > ’

T .. _ %%
where Pij = Gyj poat
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(10)

It is usuful for practical reasons to introduce the quantity Il 4p = Bap+

%G AB- The effective open string metric is defined:

Ll 1 Gij 20
(Uelly)ap = -1 G = — ( 2a; 0 )

where C;‘ij = (G — 4BPTB);;. Inverse of the szg is equal to

AB —1\AB P;j a
Girp = (Geff) = i 2 ;

262 4a?

~ ~ .. ~i~j - ~ .. ~a ~ ..
where P}J =GY — “ag Ll = GYa;a; and a' = GYa,.

3.2. CANONICAL ANALYSIS
The momenta are defined in a standard way

oL

- B B/
TA = W = H(GAB?J —2BaBY ) .

According to the definition, canonical hamiltonian is equal to

H, :/ doH, :/ do(may™ — L),
0 0

(11)

(12)

(13)
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where H, =T_ — ., Ty = :FﬁGABjﬁjf and joq4 =74 + QﬁHiAByB,.
The algebra of the currents j+4 can be calculated easily ant it holds the
following

{jxa,jrB} = £26GaBd' (0 —7), (15)
{j+a,j5B} =0. (16)

3.3. BOUNDARY CONDITIONS LIKE CONSTRAINTS OF THE THEORY
If we vary the action(1) we obtain the Euler-Lagrange equations of mo-

tion and boundary conditions. When the equations of motion are obeyed,
it holds

F (o T
55 = [ 74Py (17)
Ti
where ,Ygo) = %54 = H_Aij + I, 4pj2. We can obtain the same result

using the hamiltonian approach. If we demand the differentiability of Hamil-
tonian we get the regular terms(proportianal to the 6y and d74) and one
extra term which is the same like boundary term obtained in Lagrangian
approach.

There are a few choices of boundary conditions. We choose the Neuman
boundary conditions i.e. 7540) = 0 at the string endpoints. The boundary
conditions are considered like constraints here.

3.4. CONSISTENCY CONDITIONS

Boundary conditions are considered like constraints and we must exam-

ine the conistency conditions. We obtain

) = {Hen Y = Tap(-1)02 + Teanapi®. (19)

Using Taylor expansion, the infinite set of consistency conditions turns
into one condition. At the point ¢ = 0, we have:

o" . )
La(0) = Y 707 (0= 0) = eapi®(0) + Moapif(-0).  (19)
n>0 "

Similarly, at the point o = 7
n

Calo) = Z (U;L!Tr)yxl)(ﬂ) =T apjP(0) + M_apjP(2m —0). (20)



Noncommutavity in the presence of the dilaton field 409

The Poisson bracket between the canonical hamiltonian and quantity I"4
is equal to o derivative of I'4, so there are no more constraints in the theory.
From the constraints’ algebra

{La(0),T5@)} = —kG{}6 (0 —7) (21)

we conclude all constraints are of the second class(assumption a2 # 0).
3.5. SOLUTION OF THE BOUNDARY CONDITIONS
For some field W we can define the symmetric and antisymmetric part
under transformation (o — —o)

w(o) = 5 [W(o) + W(~0) (o) = 5 [W(o) - W(-o)] . (22)

On this way we define the symmetric and antisymmetric parts of the coordi-
nates (¢“,¢*) and momenta (p4,p4). Using the definition of the current ji 4
(14), boundary conditions (19) and new coordinates and momenta, we can
rewrite the boundary conditions in terms of the new variables. We solve the
boundary conditions equalizing separatly the symmetric and antisymmetric
part with zero. The final result is

TA=pa, y(o)=q— 2@AB/ doips, (23)

where ©48 = —%(Ge_flfBGfl)AB.

3.6. NONCOMMUTATIVITY
Using the algebra of the ”0ld” canonical variables, we can calculate the
algebra of the "new” variables:

{a*(1,0),p5(1,0)} = 6" 535(0,7), (24)

where 85(0,7) = 1[0(c — 7) + 6(c +7)].
From the (24) and (23), we obtain the final result:

{y*(r,0),9"(1,9)} = 204%6(0 + 7) (25)

where the function 0(x) is defined:
0 ifx=0

Ox)=1 1/2 f0<xz <27 (26)
1 ifx =27
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In component form we have:

{2%(0),27(5)} = 20Y0(c +5), (27)
{2'(0), F(5)} = 20'0(c + &), (28)
{F(0),F(5)}=0. (29)

where @9 = —1(PTBPT)i and @ = @BS )" _ @By
K 2Ka? 2ka? *
It is not so difficult to see that:

@07 =0 , a;0'=0 (30)

Because of that, we have one commutative coordinate x = a;x".

4. CASE a> =0
Because of detG g = —4a2detGi]~, metric of the extended space-time is
singular. If we use the definition of the momenta 74 = (m;,7r) (13) and
currents, we obtain that, for a = 0, the following identity holds

, 1 , A . 1

j=a'm — 5771: + 2/<a’Bij:L” =a'j4i — ijiF =0. (31)
This is a primary constraint. We can prove by definition that the com-
ponents of the canonical hamiltonian are T4 = $ﬁGU J+ij+j- The total
hamiltonian is

Hr =He+ Aj, (32)

where A is an Lagrange multiplier. Using the currents’ algebra (15) and
the total hamiltonian (32), we can conclude easily that j is a first class
constraint. As a consequence of that, it generates a simmetry. The local
symmetry generator and its action on variables are defined like

5,X ={X.G},  G= [don(e)j(o), (33)
where n(0) is a parameter of the gauge transformation. If we act with G on

2t ="+ 2a'F and P; = m; + 4k F'a’ Bj;, we obtain they are gauge invariant.
Poisson bracket of these variables tells us they are canonically conjugated.
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The current ji; can be rewritten in the form of the current ji4 but in terms
of the gauge invariant variables:

jai = i + 2644527 + 260, F' = P; + 2kT1452"7 . (34)

We know T = :FﬁG"j J+ij+j. So, hamiltonian is gauge invariant. On the
other side, if we implement the transformation on the action (4), we obtain
it is gauge invariant too. Formally, the noncommutativity relation is the
same as in dilaton free case

{£i(r,0),#(1,5)} = 20Y6(c +7), (35)

where ©7 = —%(G;flfBG_l)’:j and the function #(x) is defined in Eq.(26).
The number of the noncommutative coordinates remains the same as in free
dilaton case because the constraint removed one degree of freedom.

5. CONCLUDING REMARKS

We have considerd here the contribution of the linear dilaton field to the
noncommutativity parameter. In the specific background, extending the
space-time, we transformed the starting action into the form of the dilaton
free action. But, two cases appeared- a? # 0 and a® = 0.

The first case, in extended space-time, is the same as dilaton free case.
But, when we split the extended space-time in  and F' part, we conclude
that number of noncommutative coordinates are the same as before. We
have one commutative Dp-brane coordinate in the direction of the dilaton
gradient a;.

The second case is much more interesting. Metric of the extended space-
time is not invertible. That is a sign that we have a symmetry in the
theory cancelling one degree of freedom. After short canonical analysis we
found that theory has one first class constraint. It is a generator of the
symmetry and responsible to ”put things in order”. Action and Hamiltonian
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are expressed in terms of the new, gauge invariant variables and have the
form as in dilaton free case. Consequently, the noncommutativity relation
remains the same but it holds for the gauge invariant variables and the
number of the noncommutative coordinates is unchanged.
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