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Abstract. The concepts necessary for an algebraic construction of
a gravity theory on noncommutative spaces are introduced. The θ-
deformed diffeomorphisms are studied and a tensor calculus is defined.
This leads to a deformed Einstein-Hilbert action which is invariant with
respect to deformed diffeomorphisms. This contribution is based on
joint work with P. Aschieri, C. Blohmann, M. Dimitrijević, P. Schupp
and J. Wess.
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1. Noncommutative Spaces
It is expected that in order to obtain a better understanding of physics

at short distances and in order to cure the problems occuring when trying
to quantize gravity one has to change the nature of space-time in a funda-
mental way. One way to do so is to implement noncommutativity by taking
coordinates which satisfy the commutation relations

[x̂µ, x̂ν ] = Cµν(x̂) 6= 0 . (1)

The function Cµν(x̂) is unknown. For physical reasons it should be a function
that vanishes at large distances where we experience the commutative world
and may be determined by experiments [1]. We denote the algebra generated
by noncommutative coordinates x̂µ which are subject to the relations (1) by
Â (algebra of noncommutative functions). In what follows we will exclusively
consider the θ-deformed case which may at very short distances provide a
reasonable approximation for Cµν(x̂)

[x̂µ, x̂ν ] = iθµν = const. (2)
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but we note that the algebraic construction presented here can be generalized
to more complicated noncommutative structures of the above type which
possess the Poincaré-Birkhoff-Witt (PBW) property.

2. Symmetries on Deformed Spaces

In general the commutation relations (1) are not covariant with respect
to undeformed symmetries. For example the canonical commutation rela-
tions (2) break Lorentz symmetry if we assume that the noncommutativity
parameters θµν do not transform.

The question arises whether we can deform the symmetry in such a way
that it acts consistently on the deformed space (i.e. leaves the deformed
space invariant) and such that it reduces to the undeformed symmetry in
the commutative limit. The answer is yes: Lie algebras can be deformed
in the category of Hopf algebras (Hopf algebras coming from a Lie algebra
are also called Quantum Groups)2. Quantum group symmetries lead to new
features of field theories on noncommutative spaces. Because of its simplicity,
θ-deformed spaces are very well-suited to study those.

In the following we will construct explicitly a θ-deformed version of diffeo-
morphisms which consistently act on the noncommutative space (2). Then
we present a gravity theory which is invariant with respect to this deformed
diffeomorphisms [2, 3, 4].

3. Diffeomorphisms

Diffeomorphisms are generated by vector-fields ξ. Acting on functions,
vector-fields are represented as linear differential operators ξ = ξµ∂µ. Vector-
fields form a Lie algebra Ξ with the Lie bracket given by

[ξ, η] = ξ × η

where ξ × η is defined by its action on functions

(ξ × η)(f) = (ξµ(∂µην)∂ν − ηµ(∂µξν)∂ν)(f).

The Lie algebra of infinitesimal diffeomorphisms Ξ can be embedded into its
universal enveloping algebra which we want to denote by U(Ξ) . The univer-
sal enveloping algebra is an associative algebra and possesses a natural Hopf

2To be more precise the universal enveloping algebra of a Lie algebra can be deformed.
The universal enveloping algebra of any Lie algebra is a Hopf algebra and this gives rise
to deformations in the category of Hopf algebras.
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algebra structure. The coproduct is defined as follows on the generators3:

∆ : U(Ξ) → U(Ξ)⊗ U(Ξ)
Ξ 3 ξ 7→ ∆(ξ) := ξ ⊗ 1 + 1⊗ ξ. (3)

For a precise definition and more details on Hopf algebras we refer the
reader to text books [5]. For our purposes it shall be sufficient to note
that the coproduct implements how the Hopf algebra acts on a product in a
representation algebra (Leibniz-rule). Scalar fields are defined by their trans-
formation property with respect to infinitesimal coordinate transformations:

δξφ = −ξφ = −ξµ(∂µφ). (4)

The product of two scalar fields is transformed using the Leibniz-rule

δξ(φψ) = (δξφ)ψ + φ(δξψ) = −ξµ(∂µφψ) (5)

such that the product of two scalar fields transforms again as a scalar.
Similarly one studies tensor representations of U(Ξ). For example vector

fields are introduced by the transformation property

δξVα = −ξµ(∂µVα)− (∂αξµ)Vµ

δξV
α = −ξµ(∂µV α) + (∂µξα)V µ.

The generalization to arbitrary tensor fields is straight forward:

δξT
µ1···µn
ν1···νn

= −ξµ(∂µTµ1···µn
ν1···νn

) + (∂µξµ1)Tµ···µn
ν1···νn

+ · · ·+ (∂µξµn)Tµ1···µ
ν1···νn

−(∂ν1ξ
ν)Tµ1···µn

ν···νn
− · · · − (∂νnξν)Tµ1···µn

ν1···ν .

As for scalar fields, we also find that the product of two tensors trans-
forms like a tensor. Summarizing, we have seen that scalar fields, vector
fields and tensor fields are representations of the Hopf algebra U(Ξ), the
universal enveloping algebra of infinitesimal diffeomorphisms. The Hopf al-
gebra U(Ξ) acts via infinitesimal coordinate transformations δξ which are
subject to the relations:

[δξ, δη] = δξ×η (6)
∆δξ = δξ ⊗ 1 + 1⊗ δξ . (7)

3The structure maps are defined on the generators ξ ∈ Ξ and the universal property
of the universal enveloping algebra U(Ξ) assures that they can be uniquely extended as
algebra homomorphisms (respectively anti-algebra homomorphism in case of the antipode
S) to the whole algebra U(Ξ).
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The transformation operator δξ is explicitly given by differential operators
which depend on the representation under consideration. In case of scalar
fields this differential operator is given by −ξµ∂µ.

4. Deformed Diffeomorphisms

The concepts introduced in the previous subsection can be deformed
in order to establish a consistent tensor calculus on the noncommutative
space-time algebra (2). In this context it is necessary to account the full
Hopf algebra structure of the universal enveloping algebra U(Ξ).

In our setting the algebra Â possesses a noncommutative product defined
by

[x̂µ, x̂ν ] = iθµν . (8)

We want to deform the structure maps (7) of the Hopf algebra U(Ξ) in such
a way that the resulting deformed Hopf algebra which we denote by U(Ξ̂)
consistently acts on Â. Let U(Ξ̂) be generated as algebra by elements δ̂ξ,
ξ ∈ Ξ. We leave the algebra relation undeformed

[δ̂ξ, δ̂η] = δ̂ξ×η (9)

but we deform the co-sector

∆δ̂ξ = e−
i
2
hθρσ ∂̂ρ⊗∂̂σ(δ̂ξ ⊗ 1 + 1⊗ δ̂ξ)e

i
2
hθρσ ∂̂ρ⊗∂̂σ , (10)

where [∂̂ρ, δ̂ξ] = δ̂(∂ρξ). The deformed coproduct (10) reduces to the unde-
formed one (7) in the limit θ → 0. We have to check whether the above
deformation is a good one in the sense that it leads to a consistent action on
Â. First we need a differential operator acting on fields in Â which represents
the algebra (9). Let us consider the differential operator

X̂ξ :=
∞∑

n=0

1
n!

(− i

2
)nθρ1σ1 · · · θρnσn(∂̂ρ1 · · · ∂̂ρn ξ̂µ)∂̂µ∂̂σ1 · · · ∂̂σn . (11)

Then indeed we have
[X̂ξ, X̂η] = X̂ξ×η. (12)

It is therefore reasonable to introduce scalar fields φ̂ ∈ Â by the trans-
formation property

δ̂ξφ̂ = −(X̂ξφ̂).
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The next step is to work out the action of the differential operators X̂ξ on
the product of two fields. A calculation [2] shows that

(X̂ξ(φ̂ψ̂)) = µ ◦ (e−
i
2
hθρσ ∂̂ρ⊗∂̂σ(X̂ξ ⊗ 1 + 1⊗ X̂ξ)e

i
2
hθρσ ∂̂ρ⊗∂̂σ φ̂⊗ ψ̂).

This means that the differential operators X̂ξ act via a deformed Leibniz rule
on the product of two fields. Comparing with (10) we see that the deformed
Leibniz rule of the differential operator X̂ξ is exactly the one induced by the
deformed coproduct (10):

δ̂ξ(φ̂ψ̂) = e−
i
2
hθρσ ∂̂ρ⊗∂̂σ(δ̂ξ ⊗ 1 + 1⊗ δ̂ξ)e

i
2
hθρσ ∂̂ρ⊗∂̂σ(φ̂ψ̂) = −X̂ξ . (φ̂ψ̂).

Hence, the deformed Hopf algebra U(Ξ̂) is indeed represented on scalar fields
φ̂ ∈ Â by the differential operator X̂ξ. The scalar fields form a U(Ξ̂)-module
algebra.

In analogy to the previous section we can introduce vector and tensor
fields as representations of the Hopf algebra U(Ξ̂). The transformation prop-
erty for an arbitrary tensor reads

δ̂ξT̂
µ1···µr
ν1···νs

= −(X̂ξT̂
µ1···µn
ν1···νn

) + (X̂(∂µξµ1 )T̂
µ···µn
ν1···νn

) + · · ·+ (X̂(∂µξµn )T̂
µ1···µ
ν1···νn

)

−(X̂(∂ν1ξν)T̂
µ1···µn
ν···νn

)− · · · − (X̂(∂νnξν)T̂
µ1···µn
ν1···ν ).

Up to now we have seen the following:

• Diffeomorphisms are generated by vector-fields ξ ∈ Ξ and the universal
enveloping algebra U(Ξ) of the Lie algebra Ξ of vector-fields possesses
a natural Hopf algebra structure defined by (7).

• The algebra of scalar fields φ ∈ A is a U(Ξ)-module algebra.

• The universal enveloping algebra U(Ξ) can be deformed to a Hopf
algebra U(Ξ̂) defined in (9,10).

• U(Ξ̂) consistently acts on the algebra of noncommutative functions Â,
i.e. the algebra of noncommutative functions is a U(Ξ̂)-module algebra.

• Regarding U(Ξ̂) as the underlying “symmetry” of the gravity theory to
be built on the noncommutative space Â, we established a full tensor
calculus as representations of the Hopf algebra U(Ξ̂).
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5. Noncommutative Geometry
The covariant derivative D̂µ can algebraically be defined by demanding

that acting on a vector-field it produces a tensor-field

δ̂ξD̂µV̂ν
!= −(X̂ξD̂µV̂ν)− (X̂(∂µξα)D̂αV̂ν)− (X̂(∂νξα)D̂µV̂α) (13)

The covariant derivative is given by a connection Γ̂µν
ρ

D̂µV̂ν = ∂̂µV̂ν − Γ̂µν
ρV̂ρ.

From (13) it is possible to deduce the transformation property of Γ̂µν
ρ

δ̂ξΓ̂µν
ρ = (X̂ξΓ̂µν

ρ)−(X̂(∂µξα)Γ̂αν
ρ)−(X̂(∂νξα)Γ̂µα

ρ)+(X̂(∂αξρ)Γ̂µν
α)−(∂̂µ∂̂ν ξ̂

ρ).

The metric Ĝµν is defined as a symmetric tensor of rank two. It can be
obtained for example by a set of vector-fields Êµ

a, a = 0, . . . , 3, where a is
to be understood as a mere label. These vector-fields are called vierbeins.
Then the symmetrized product of those vector-fields is indeed a symmetric
tensor of rank two

Ĝµν :=
1
2
(Êµ

aÊν
b + Êν

bÊµ
a)ηab.

Here ηab stands for the usual flat Minkowski space metric. Let us assume that
we can choose the vierbeins Êµ

a such that they reduce in the commutative
limit to the usual vierbeins eµ

a. Then also the metric Ĝµν reduces to the
usual, undeformed metric gµν .

The inverse metric tensor we denote by upper indices

ĜµνĜ
νρ = δρ

µ.

We use Ĝµν respectively Ĝµν to raise and lower indices.
The curvature and torsion tensors are obtained by taking the commutator

of two covariant derivatives4

[D̂µ, D̂ν ]V̂ρ = R̂µνρ
αV̂α + T̂µν

αD̂αV̂ρ

which leads to the expressions

R̂µνρ
σ = ∂̂νΓ̂µρ

σ − ∂̂µΓ̂νρ
σ + Γ̂νρ

βΓ̂µβ
σ − Γ̂µρ

βΓ̂νβ
σ

T̂µν
α = Γ̂νµ

α − Γ̂νµ
α.

4The generalization of covariant derivatives acting on tensors is straight forward [2].
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If we assume the torsion-free case, i.e.

Γ̂µν
σ = Γ̂νµ

σ,

we find an unique expression for the metric connection (Christoffel symbol)
defined by

D̂αĜβγ
!= 0

in terms of the metric and its inverse5

Γ̂αβ
σ =

1
2
(∂̂αĜβγ + ∂̂βĜαγ − ∂̂γĜαβ)Ĝγσ.

From the curvature tensor R̂µνρ
σ we get the curvature scalar by contract-

ing the indices
R̂ := ĜµνR̂νµρ

ρ.

R̂ indeed transforms as a scalar which may be checked explicitly by taking
the deformed coproduct (10) into account.

To obtain an integral which is invariant with respect to the Hopf algebra
of deformed infinitesimal diffeomorphisms we need a measure function Ê.
We demand the transformation property

δ̂ξÊ = −X̂ξÊ − X̂(∂µξµ)Ê. (14)

Then it follows with the deformed coproduct (10) that for any scalar field Ŝ

δ̂ξÊŜ = −∂̂µ(X̂ξµ(ÊŜ)).

Hence, transforming the product of an arbitrary scalar field with a measure
function Ê we obtain a total derivative which vanishes under the integral.
A suitable measure function with the desired transformation property (14)
is for instance given by the determinant of the vierbein Êµ

a

Ê = det(Êµ
a) :=

1
4!

εµ1···µ4εa1···a4Êµ1
a1Êµ2

a2Êµ3
a3Êµ4

a4 .

Now we have all ingredients to write down the Einstein-Hilbert action on Â
as

ŜEH :=
∫

det(Êµ
a)R̂ + complex conj..

5We don’t introduce a new symbol for the metric connection.
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It is by construction invariant with respect to deformed diffeomorphisms
meaning that

δ̂ξŜEH = 0.

In this section we have presented the fundamentals of a noncommutative
geometry on the algebra Â and defined an invariant Einstein-Hilbert action.
It is a deformation of the usual Einstein-Hilbert action. Using the star-
product formalism it is possible to map the algebraic quantities to functions
depending on commutative variables. Then it is possible to study explicitly
deviations of the undeformed theory in orders of a deformation parameter
[4, 2]. Very interesting is also to study a generalization of the above concepts
to a more general class of noncommutative structures given by a twist [3].
This class contains in particular lattice-like spacetime algebras which may
indeed provide a regularization of the field theory under consideration.

Acknowledgments The results presented in this talk were obtained to-
gether with P. Aschieri, C. Blohmann, M. Dimitrijević, P. Schupp and J.
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