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Quantum Hall states from the matrix oscillator point of view

S.Meljanac1, A. Samsarov2

1 Rudjer Boskovic Institute, Bijenicka c.54, HR-10002 Zagreb, Croatia
2 Rudjer Boskovic Institute, Bijenicka c.54, HR-10002 Zagreb, Croatia

Abstract. A quantum matrix oscillator model is shown to reproduce
the quantum Hall states in a direct way and is intimately related to the
regularized matrix model introduced by Polychronakos. By transferring
the consideration to the Bargmann representation with the help of a
particular similarity transformation, we show that the quantum matrix
oscillator describes the quantum mechanics of electrons in the lowest
Landau level with the ground state described by the Laughlin-type wave
function.
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1. INTRODUCTION

The investigation of the quantum dynamics of nonrelativistic electrons
in a uniform magnetic field has a far reaching application to the physics of
the quantum Hall effect. The physics of electrons in the lowest Landau level
exhibits some interesting features, the example of which is the occurrence
of the incompressible fluidlike [1] states of condensed electrons whose exci-
tations have fractional charge and obey fractional statistics [2], [3]. These
states appear only when the electron densities are certain rational fractions
of the density corresponding to a fully filled lowest Landau level and the
gap in their excitation spectrum gives rise to the experimentally observed
fractional quantum Hall effect. They are described by the Laughlin wave
functions [4]. The tools for studying the exactness and universality of the
Laughlin wave functions are offered in a natural way in the realm of matrix
models [5].

Received: 20 August 2005

359



360 S.Meljanac, A.Samsarov

Recently, an attempt was made by Susskind [6] to describe the incom-
pressible quantum Hall fluid in terms of the noncommutative Chern-Simons
theory on the plane. As the Chern-Simons theory on the plane necessarily
describes a spatially infinite quantum Hall system, it was also of interest to
find a description of finite systems with a finite number of electrons and this
was achieved by the model introduced by Polychronakos [7]. Such a regular-
ized model, proposed as a theory of finite matrices with additional boundary
vector fields, has provided a description of the quantum Hall droplet and its
boundary excitations [8]. The quasiparticle and quasihole states were ex-
plained in terms of Schur functions within an algebraic approach [9].

The finite matrix Chern-Simons model is described by two matrices
X1, X2 or A, A†. It was shown [9] that both these matrices could not be
diagonal simultaneously with some operators on the diagonal. This would
lead to inconsistencies and to only two towers of states of the Bose and Fermi
type, respectively. There was also a problem with the construction of the
general Laughlin states [10]. However, the strong connection of the matrix
Chern-Simons model with the Calogero model and the quantum Hall effect
was pointed out in [7-10].

Recently, a quantum matrix oscillator was proposed and its equivalence
to the Calogero-type models was established [11], [12]. The classical ver-
sion of the matrix oscillator was introduced in [13] and the path integral
quantization of this model was performed in [14].

In this work we propose a quantum matrix oscillator and establish its
connection to the finite matrix Chern-Simons model introduced by Poly-
chronakos. We use the matrix oscillator model [11] to find the physical states
of electrons in the lowest Landau level. The ground states are Laughlin-type
states and the analysis leading to this result, together with the construc-
tion of the excited states, relies heavily on the consideration that is carried
out in the Bargmann representation. The main point here is to reduce the
eigenvalue problem to a much simpler one and then to transfer the obtained
results back to the original problem, with the help of a conveniently con-
structed similarity transformation. Although the analysis is performed for
the one-dimensional case only, it can as well be straightforwardly extended
to two and higher dimensions as long as identical particles are considered.
As a consequence, the results obtained can be analytically continued onto
the whole complex plane incorporating in such a way the wave functions of
the true Laughlin form that depend on complex variables.
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2. MATRIX OSCILLATOR, ACTION AND QUANTIZATION

Let us construct an action for the matrix oscillator described by N ×
N matrices X, P with operator-valued matrix elements, (Xij)

† =
Xji, (Pij)

† = Pji; i, j = 1, 2, ..., N. We take the matrix X to be di-
agonal, with real elements. The Hamiltonian and commutation relations
[11] are then (h̄ = 1)

H = R(
1

2m
P2 +

1
2
mω2X2)C, (1)

[X,P] = ıV, V = (1− ν)1 + νJ , (2)

where R = (1......1) is a row-vector whose all components are units, and
C = RT is a transpose of R. Also, we have RC = N and CR = J ,
where J is the N ×N matrix with units at all positions. The matrix V
is symmetric, VT = V, where ν > − 1

N is a real parameter and m is
the mass. Generally, V is a Hermitian matrix V† = V, with νii = 1
and νij

∗ = νji, ∀i, j, and the effective Hamiltonian contains three-body
interactions [12].

In order to describe two-dimensional systems of N charged particles
with charge e in a magnetic field B, it is convenient to define the matrix
X1 ≡ X and a second matrix X2 expressed in terms of P as

X2 = − 1
eB
P = − 1

mω
P, (3)

where ω = eB
m . Note that the trace Tr[X1, X2] is equal to N

ıeB , in
accordance with the relation (2).

The coordinates of the electrons can be globally parametrized in a fuzzy
way by introducing two N ×N Hermitian matrices Xa; a = 1, 2. The ac-
tion leading to the quantum matrix oscillator is then given by the regularized
finite matrix Chern -Simons model introduced by Polychronakos

SM =
eB

2

∫
dtTr[εabXa(Ẋb − ı[A0, Xb]) + 2θA0]

−ωeBN

2ψ̄ψ

∫
dtψ̄XaXaψ −

∫
dtψ̄(ı∂t + A0)ψ, (4)

where eBθ = k, A0 is a matrix entering into the above action only linearly
and ψ (ψ̄ = ψ∗T ) is a boundary vector field. The action (4) is invariant
under the transformations Xa → UXaU

−1, ψ → Uψ, ψ̄ → ψ̄U−1, A0 →
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UA0U
−1 + ıU∂tU

−1, where U is a unitary matrix, U ∈ U(N). The term
with ω serves as a potential box that keeps particles near the origin and
also provides a Hamiltonian for the theory that chooses a unique ground
state, while the last term in the action can be interpreted as a boundary
term. Also, note that the minor change is made in the harmonic term in
respect to the action of Ref. [7], namely Tr(Xa)

2 is replaced by ψ̄(Xa)
2ψ.

But, as these two parts yield the same spectrum when acting on the singlet
sector of the U(N) group, this replacement essentially does not make any
difference.

The variation of the action SM in the field variable A0 gives the
equation of motion for the time component A0 of the gauge field. This
equation has the form

ıeB[X1, X2] + k1− ψψ̄ = 0 (5)

and can be interpreted as the Gauss law. Now we recognize the Gauss law
(5) as a quantization condition imposed on the matrices X1 and X2, after
which their matrix elements become operators [11]. As an additional point,
we require that one of the Xa matrices, say X1, can be diagonalized.
From Eq. (5) it follows Tr[X1, X2] = Trψψ̄−Nk

ıeB = N
ıeB , in agreement with

Eqs. (2),(3). This means that Trψψ̄ = N(k + 1).
At this point it is important to note that certain quantization constraints

(k ∈ Z) can be imposed on the parameter k and these may be justified
by some group theoretic arguments [15]. So, in further considerations, k
will be an integer. The obviously redundant number of degrees of freedom is
reduced to effectively 2N phase space variables with the help of the Gauss
law constraint (5) and U(N) gauge symmetry. At the beginning we had
2N2 degrees of freedom and 2N components of the boundary complex
vector. After diagonalizing X1, and solving the Gauss constraint, we are
left with 2N degrees of freedom, corresponding to N electrons.

In the action (4) we have introduced a quadratic potential N
2ψ̄ψ

mω2ψ̄(Xa)
2ψ

which, after the diagonalization of the matrix X1, becomes equal to the
quantum matrix oscillator Hamiltonian (1). More explicitly, the unitary
transformation U which diagonalizes the matrix X1, UX1U

† = X ′
1 =

diag(x1, ..., xN ), will change the vector ψ into φ = Uψ and the matrix
X2 into X ′

2, so that, after solving the quantization constraint (5), it can
be represented [11] with the following operator-valued elements:

−ıeB(X ′
2)ij = (

∂

∂xi
+

∑

k 6=i

λik

xi − xk
)δij − 1− δij

xi − xj
φiφ̄j , (6)
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where the eigenvalues of X1 can be interpreted as the particle coordinates
in the x1 direction. The parameters λik, i, k = 1, ..., N, are gauge
parameters and φ is the vector we end up with, after the vector ψ is
rotated by the transformation U, φ = Uψ. In the following, we work in the
gauge where all gauge parameters λik are equal to zero. The Gauss law (5)
is now just a deformed quantization condition (2) that can be rewritten in
the form

−eB[X ′
1, X

′
2] = ıV ′, V ′ = −k1 + φφ̄. (7)

If one of the matrices X ′
1, X

′
2 in the relation (7) is diagonal, which is the

case here, then the consistency of the solution of the commutation relation
(7) necessarily requires that the matrix V ′ should be of the form V ′ =
−k1+(k+1)J , where the matrix J has already been defined after Eq. (2).
Namely, a more detailed analysis shows that |φi| ≡ |(Uψ)i| =

√
k + 1, k ≥

−1 and the residual U(1)N gauge freedom can be used to choose the phase
factors of φi so that φi =

√
k + 1. The matrix V ′ is equal to the matrix

V = (1 − ν)1 + νJ , where ν = k + 1. In the classical limit h̄ → 0 or
equivalently ν → ∞, we have Tr[X1, X2] = 0 and the diagonal elements
in V ′ are equal to zero. In regard to the parameter k, the two specially
interesting cases are when k = −1(ν = 0) and k = 0(ν = 1). The former
corresponds to the Bose system and the latter corresponds to the Fermi
system.

3. BARGMANN REPRESENTATION

Let us introduce matrix operators

A± =
√

mω

2
(X ′

1 ± ıX ′
2) (8)

such that the following commutation relation holds:

[A−,A+] = −k1 + φφ̄ = (1− ν)1 + νJ . (9)

Owing to the fact that the fields φ, φ̄ are proportional to R,C matrices,
i.e. φ =

√
k + 1C, φ̄ =

√
k + 1R, the Hamiltonian can now be written in a

way as Eq. (1),

H =
ω

2(k + 1)
φ̄{A−,A+}φ =

ω

2
R{A−,A+}C. (10)
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The ground state is a column vector ‖ 0〉ν that is annihilated by the
operator A−,

A−J ‖ 0〉ν = A−‖ 0〉ν = 0, ‖ 0〉ν ∼ C
∏

i<j

(xi − xj)
νe−

mω
2

∑
i
xi

2
(11)

and the full Fock space [11] is given by the states
∏
n

(Tr(A+nJ ))mn‖ 0〉ν =
∏
n

(
∑

i

(a+
i )n)

mn |0〉ν , (12)

where (a+
i )n = (RA+n)i, (a−i )n = (A+n

C)i, i = 1, ..., N, with ai
+, ai

−

being the one-particle creation and annihilation operators [11] for the Hamil-
tonian H. The corresponding energies are

E{m} = E0 + ω
∑
n

nmn, (13)

where

E0 = ω(
N

2
+ ν

N(N − 1)
2

), ν ≥ 0. (14)

Now we analyze the structure of energy eigenstates in the Bargmann
representation, as was done for the generalized Calogero model in arbitrary
dimension [16]. Starting from the matrices X1, X2, we define the combi-
nations A±B =

√
mω
2 (X1 ± ıX2), where the label B indicates that we are

working in the Bargmann representation, the transfer to which is realized
by the similarity transformation

A+
B = S−1A+S, A−B = S−1A−S, (15)

where S is the following operator:

S = e−ωT+e−
1
2ω

T− . (16)

The operators T+, T−, together with the operator T0, are the generators
[11] of the SU(1, 1) algebra and are given as follows:

T+ =
m

2
ψ̄X1

2ψ =
m

2
RX ′

1
2
C,

T− = −mω2

2
ψ̄X2

2ψ = −mω2

2
RX ′

2
2
C,
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T0 = − ımω

4
ψ̄(X1X2 + X2X1)ψ = − ımω

4
R(X ′

1X
′
2 + X ′

2X
′
1)C. (17)

The frequency ω is assumed to be different from zero. Note that the
same transformation connects the Hamiltonians H = ω

2 R{A−,A+}C and
HB = ω

2 R{A−B,A+
B}C, together with their corresponding ground states,

namely
H = SHBS−1 = 2ωST0S

−1, |0〉ν = S|0〉Bν (18)

and that the commutation relation satisfied by A−B,A+
B is still unchanged

[A−B,A+
B] = −k1 + φφ̄ = (1− ν)1 + νJ . (19)

As the same relation (18), up to the factor 2ω, is also satisfied by the opera-
tor T0, which, when rewritten in an explicit form, is equal to 1

2(
∑

i xi
∂

∂xi
+

N
2 ), we conclude that the Hamiltonian in the Bargmann representation
HB is exactly the operator 2ωT0. This does not mean that the oper-
ators A−B,A+

B can be identified with the matrices X ′
1, X

′
2. In other

words, A+
B is not a diagonal matrix, but rather it satisfies the relation

RA+
B

n
C =

∑
i (ai

+)n
B, where (ai

+)n
B = (RA+

B
n)i. An analogous relation

holds for A−B, namely RA−B
n
C =

∑
i (ai

−)n
B, (ai

−)n
B = (A−B

n
C)i. These

totally symmetric combinations of operators (ai
+)n

B act as creation oper-
ators for the Hamiltonian HB = 2ωT0, so that the whole Fock space for
HB can be constructed by applying them to the vacuum state

|0〉Bν =
∏

i<j

(xi − xj)
ν , (20)

which is annihilated by the covariant derivative di

di|0〉Bν ≡ (
∂

∂xi
− ν

∑

l 6=i

1
xi − xl

)
∏

j<k

(xj − xk)
ν = 0. (21)

The operators xi, di, i, j = 1, ..., N satisfy the commutation relations
[di, xj ] = δij ; [di, dj ] = 0 and the Hamiltonian HB can be expressed in
terms of them in the following way:

HB = E0 + ω
∑

i

xidi. (22)

As a consequence, we have the following set of relations:

[HB, xi] = xi,
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[HB, di] = −di, (23)

which allows us to interpret xi, di as a pair of creation and annihilation
operators for the Hamiltonian HB. However, only totally symmetric combi-
nations of these operators have the physical meaning, so the true Fock space
for HB is constructed by applying the operators

B+
n ≡ ∑

i xi
n,

B−
n ≡ ∑

i di
n (24)

to the vacuum (20). In view of the arguments just stated, the sums of powers
of the operators (ai

+)B, (ai
−)B in the Bargmann representation are in fact

reduced to
∑

i (ai
+)n

B =
∑

i xi
n, i.e.

∑
i (ai

−)n
B =

∑
i di

n.
The SU(N) invariant ground-state vacuum in the Bargmann represen-

tation, for a fixed ν, is

|0〉νB ∼ (εi0...iN−1

N−1∏

k=0

(RA+
B

k)ik
)
ν |0〉B0 ≡ (εi0...iN−1

N−1∏

k=0

(a+
ik

)k

B
)
ν |0〉B0 , (25)

where (a+
ik

)k

B
= (RA+

B
k)ik

, (a−ik)k

B
= (A+

B
k
C)ik

, ik = 1, ..., N, with
(aik

+)B, (aik
−)B being the one-particle creation and annihilation operators

[11] for the Hamiltonian HB. Owing to the fact that we know the trans-
formation from HB to H, we also know the transformation between the
corresponding ladder operators

S
∑

i

(ai
±)n

BS−1 =
∑

i

(a±i )n
. (26)

As a consequence, in the Bargmann representation the expression for the
ground-state takes on the form

‖ 0〉Bν = S−1‖ 0〉ν ∼ C
∏

i<j

(xi − xj)
ν ≡ C|0〉Bν , ν ≥ 0, (27)

with A−B ‖ 0〉Bν = 0. Then all states, Eq. (12), in the Bargmann represen-
tation, with the covariant matrix derivative, Eq. (21), can be represented
as

C
∏
n

(
∑

i

xi
n)

mn
∏

i<j

(xi − xj)
ν . (28)

For example, the quasihole state in the Bargmann representation is
∏N

i=1(z−
xi)

∏
i<j (xi − xj)

ν , where z is a complex number. Note that this result is
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[12] S. Meljanac, M. Mileković , A.Samsarov, Phys.Lett.B 573(2003) 202;
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