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A non-perturbative orbifold gauge theory
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Abstract. We construct a Zy orbifold projection of SU(N) gauge
theories formulated in five dimensions with a compact fifth dimen-
sion. We show through a non—perturbative argument that no boundary
terms diverging with powers of the five—dimensional ultraviolet cutoff
are generated. This opens the possibility of studying these theories non—
perturbatively in order to establish if they can be used as effective weakly
interacting theories at low energies.
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We would like to investigate here if one could construct a four—dimensional
non—supersymmetric effective gauge theory coupled to a Higgs field without
a hierarchy problem. We consider SU(N) pure gauge theories in five di-
mensions, compactified on the orbifold R* x S'/Z5. In this scenario, the
gauge symmetry is generically broken at the orbifold fixed points and the
Higgs field corresponds to those extra dimensional components of the five
dimensional gauge field that point along the broken gauge directions.

A 5D gauge theory is non-renormalizable. To make sense out of such a
theory, an UV cutoff A can be introduced and the theory can be treated as
an effective low—energy theory. One is however not guaranteed that this is
a consistent program unless there exists a range of the cutoff A where the
low—energy physical properties depend only weakly on A (this is called the
scaling region) and the theory is weakly interacting.

In an orbifold compactification of a field theory there is an additional
problem that appears due to the presence of the boundaries: fields acquire
Dirichlet or Neumann boundary conditions at the fixpoints of the orbifold.
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The formulation of a field theory with prescribed boundary values for some
of the field components requires in general additional renormalization. The
presence of boundaries introduces additional divergences and these induce
boundary counterterms with renormalization factors calculable in perturba-
tion theory. Of particular relevance to the hierarchy problem is the mass of
the Higgs field. It will receive corrections from the bulk, from the boundary
and from mixing effects between the bulk and the boundary. To tame the
pure bulk effects a perturbative formulation is not sufficient since it is not
guaranteed that the non-renormalizability of the higher dimensional gauge
theory will allow the Higgs mass to remain finite to all orders, as some
low order perturbative calculations seem to suggest [1], [2]. The only way to
explore the cutoff dependence of the bulk Higgs mass is to define and regular-
ize the theory non-perturbatively on the lattice [3] and perform a numerical
study. Similarly, the pure boundary contributions to the Higgs mass must
be controlled non-perurbatively. In this case however, an analytical method
is possible to construct and show that such contributions vanish identically
non-perturbatively:
The orbifold theory can be formulated on the strip

I() = {IL’M,OSJJ5 Sﬂ'R} (1)

as follows [3]. One starts with an SU(N) gauge theory defined on the open
set I. = {x,, x5 € (—€, TR+€)} with a gauge field Aps(2) defined everywhere
on I, and a spurion field G(z) € SU(N) defined in the neighborhoods O; =
{zy, 25 € (—€,€)} and Oy = {x,,25 € (TR — ¢, TR + €)} that satisfies

(RG)G = =1, (2)

with R the reflection operator R : x5 — —x5. The gauge field on O; is
constrained by

RAy = GAuG ' +GouG™, (3)

which implies R Fyyy = G Farny G~'. The transformation property of the
spurion field under a gauge transformation is

G — (RGO, (4)

The covariant derivative of G can be defined on the neighborhoods O; by
requiring that it transforms like G. Such a covariant derivative is

DG = OuG+ (RAM)G —G Ay (5)
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and in fact it is easy to see that
Dy G = 0. (6)

For any € # 0 the theories are gauge invariant and equivalent. The
breaking of the gauge symmetry is realized by taking the limit ¢ — 0. In
this limit the neighborhoods O; shrink to single points and one is left with
boundaries at x5 = 0 and x5 = mR. We approach the limit ¢ — 0 so that
(in the limit), the spurion field and its derivatives take the value

G(0) = G(xR) = g, (7)
RG(0) = RG(xR) = 0, p>0 (8)

for a constant matrix ¢ obeying g2 = 1. Since g is constant all derivatives
0y, of G vanish as € — 0. Only gauge transformations for which

Q = gQg at 5 =0 and x5 =7R 9)

are still a symmetry of the theory. Taking the limit ¢ — 0 yields the
Dirichlet boundary conditions

arv Ay = gAmg at 5 =0 and x5 = 7R, (10)

where no sum on M is implied on the left hand side. Similarly, all Neumann
boundary conditions can be obtained.
Notice that the term

tr{{Anm(2), g][An(2), g1} , (11)

is invariant under eq. (9). This term is proportional to AgA&, a would be
quadratically divergent boundary mass term for the Higgs. An operator of
the € # 0 effective action that could give rise to such a term is

tr{DMQ DMQ}, (12)

which is however identically zero, by eq. (6). In fact, it is not hard to check
that none of the operators of the € # 0 effective action can induce a boundary
Higgs mass.
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which is however identically zero, by eq. (6). In fact, it is not hard to check
that none of the operators of the € # 0 effective action can induce a boundary
Higgs mass.
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