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Noncommutativity and B-field in p-string theory
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Abstract: We explore the consequence of a noncommutative defor-
mation on the effective field theory of the tachyon of the p-adic string.
FEzact soliton solutions that interpolate between the moncommutative
soliton and that of the p-adic tachyon are obtained. A worldsheet origin
of the noncommutativity is sought in the antisymmetric Neveu-Schwarz
B-field.
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The p-adic string theory (or simply p-string theory for short), introduced
and developed in Refs.[1, 2, 3|, is an intriguing theory. Apparently it de-
scribes open string theory in an exotic discretisation of the worldsheet[4] in
the form of a Bethe lattice or an infinite (Bruhat-Tits) tree, whose boundary
is (isomorphic to) the field of p-adic numbers[6]. This helps to compute any
tree-level correlator of its lowest excitation, the p-tachyon field. As a conse-
quence of this, the low energy effective field theory of the p-tachyon is known
exactly. (See [5] for a review.) It is possible, therefore, to check|[7] that the
p-tachyon field behaves according to the conjectures by Sen[8] concerning
the open string tachyons on D-branes.

One might hope that the p-adic string theory will provide us a useful
guide to difficult questions in (usual) string theory. One is further encour-
aged by the fact that in the p — 1 limit, p-string theory seems to reduce to
(an approximation of) the usual string theory[9]. To realise this in practice,
however, we require a better understanding of the p-adic string itself. As it
is, we only know some properties of its D-branes in flat spacetime. Among
the nontrivial backgrounds, a particularly simple one a is that of a constant
rank two Neveu-Schwarz field B. In the usual case, its effect is to provide a
noncommutative deformation of the effective field theory[10].
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With this objective let us consider a noncommutative deformation of the
spacetime effective field theory of the p-tachyon on a D-brane of p-string
theory[11]:
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where, for simplicity, we assume noncommutativity along two spatial direc-
tions and the Moyal product

fxg= f(a;l,a:2) exp <;Heij5i5j) g(:cl,xQ), (2)

is used instead of ordinary mutiplication along these directions. Let us recall
that the § = 0 version of Eq.(1) was derived in [2]. Using this action, Ref.[7]
checked the Sen conjectures for the p-tachyon. To be more precise, the
maximum of the potential at o = 1 is the unstable vacuum corresponding to
the D-brane, but it also has a local minimum at ¢ = 0. The various soliton
solutions of [2] are naturally identified to the lower dimensional D-branes|7].

It is trivial to check that the constant configurations ¢ = 0 and 1 still
satisfy the deformed equation of motion:

p~ 2o = (xp)P. (3)

It is only a little more work to verify that the gaussian soliton solutions with
nontrivial space dependence generalise in the noncommutative case. Since
the x-product of gaussians is again a gaussian:
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can be used in the equation of motion (3) to determine the width a as a
polynomial of degree p
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Although we cannot find an analytic expression for the root a(#) as a function
of # in general, it is straightforward to see that in the limiting cases § = 0
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and 6 — oo, we recover the width of the gaussian lump of [2] a = 271'; Tnlp and
the ‘noncommutative soliton’ of [12] a = 1/6 respectively. The amplitude A
is determined in terms of a as
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which, again, interpolates between the commutative limit (A = pl/2e-1)
for # = 0) and the limit of large noncommutativity (A = /2 for 6§ —
00). Thus we see that the noncommutative p-soliton given by Egs.(5), (6)
and (7), interpolates smoothly between the commutative p-soliton of [2] the
noncommutative soliton of [12].

It was shown in [9] that in the p — 1 limit p-string theory reduces to the
boundary string field theory (BSFT) description of ordinary bosonic string
(truncated to two derivatives). In this limit, the lagrangian (1) reduces to:

L = —%«p* e - %sO*w(ln*(sO*sO) —1). (8)
This noncommutative deformation was considered in [14]. Amazingly, the
noncommutative p-solitons discussed above also make sense in the p — 1
limit[11]. To get the *-deformed logarithm of an ordinary exponential, we
extrapolate the n-fold x-product of the gaussian following from (4) to frac-
tional powers. The width a and the amplitude A of the gaussian lump are
now given by the transcendental equations:
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These too interpolate smoothly between the BSF'T solution a = %, A=/e
at 0 = 0 [13] to the GMS solution a = 5, A = v/2 [12, 14]. Further details
may be found in [11].

We will now consider the effect of coupling a B-field to the worlsheet of
the p-string. It is not obvious what this means as the B-field arises in the
closed string sector which is not known in p-string theory. Our objective,
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however, is modest: we are interested in a constant B-field background. This
is known to be gauge equivalent (after an integration by parts)

|
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to a background gauge field A, ~ B,,, X*, which couples to the boundary of
the worldsheet. It is not that we know about the gauge field excitation of
the open p-string (although existence of the translation zero modes for the
transverse scalars on the solitonic D-branes is a strong hint[7]). Nevertheless,
the second form above is a better starting point for a p-adic generalisation:
the p-adic worldsheet being a tree lacks an obvious 2-form[4]. However,
starting with the discrete Polyakov action on the p-adic ‘worldsheet’ and
integrating over the bulk degrees of freedon, one can write an effective non-
local action on the boundary

§, = PPV [ e g0 (K1) = XM(E))"

Alp+1) Jo € —¢'5

where, Q,, is the field of p-adic numbers and |- |, the norm in it. Historically
this action was proposed in [15] even before the local action and indeed
before the p-string ‘worldsheet’ was understood.

There remains one hurdle still. There is no natural notion of a (tan-
gential) derivative for the complex/real valued functions X* () of a p-adic
variable. Fortunately, there is a way to write this as a kernel[6, 16]

De X :/Q,, ¢ Sg?@;';)X“(é’), (11)

(10)

where sgn_(£) is a p-adic “sign function” depending on the choice of 7 € Q,:

)+, i = C% — 7'(22 for some (1, (2 € Qp,
sgn,(€) = { —1 otherwise.

Of the three inequivalent choices of 7, sgn_(£) is antisymmetric only when
7 =p,wp (WP~ = 1) and that too for p = 3 (mod 4)[6]. In order to follow
the usual string case closely, we shall restrict to these cases.

We are finally in a position to propose our action for open p-string cou-
pled to constant B-field[17]:

A mdg—dg [m (XP(€) — XM(E)) (XV(€) — X(€))
p p
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i(p+1)

P2I(—1) sgn, (£ — &) B, X*(6)XV(£) |, (12)

where I';(—1) is a (finite) number depending on p. It is straightforward to
solve for the Green’s function in the presence of the B-field[17]

G(E~¢) = —G"hlg—¢l, + 56"sen (€€,
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The above exactly correspond to the analogous results for the usual bosonic
string[18].
We seem to be at the end of the road, since formally

X X0 = Tim | ((XHOXY(0) - (XHO)X (=€) ) =i0", (14)
[€lp—0

but this conclusion would be hasty as there are caveats. The problem is due
to the fact that Q,, does not have a natural sense of an order. It is possible to
define an order by, say, ordering the coefficients in the power series expansion
of a p-adic number. We can also distinguish between ‘positive’ and ‘negative’
p-adic numbers. Unfortunately this notion is not GL(2,Q,) covariant and
thus of little use.

As a result the four p-tachyon Veneziano amplitude with minimally cou-
pled B-field as above

AW _ Pz L[ ciae34 €13C24 C14C23
pB T D pa(s) -1 pa(t) -1 pa(u) —1

~ (c12¢34 + C13C24 + C14C23) + €12€13C23, (15)

(where, ¢;; = cos 3k'0k7) does not quite match the same calculated from
the field theory action (1):

p—1 ( C12€34 C13C24 C14C23

p—2
Pl e s R e S 1) += (c12¢34 + 13024 + C14023) -

The problems here are analogous to those encountered in incorporating
Chan-Paton factors in open p-string theory[19, 5]. For details, the reader
may refer to [17].
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In summary, we studied a noncommutative deformation of the exact ef-
fective action of the open string tachyon on the D-brane of p-adic string
theory. A family of gaussian lump solution for all values of the noncom-
mutativity parameter § was obtained. It smoothly interpolates between the
soliton of the (commutative) p-adic string theory and the noncommutative
soliton. Further, it was shown that in the p — 1 limit one finds smoothly
interpolating solitons in the boundary string field theory description of the
usual bosonic string. Finally, a minimal coupling of the constant B-field to
the nonlocal action on the boundary of the p-string ‘worldsheet’ was anal-
ysed. Its effect was found to be qualitatively similar to the deformed effective
spacetime theory, although the four-tachyon amplitude did not match pre-
cisely. Perhaps in the p-adic case, one needs to go beyond the minimally
coupled B-field. Much remains to be done in understanding p-adic strings
in nontrivial backgrounds.
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