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Abstract. The construction of a family of real Hamiltonian forms
(RHF) for the special class of affine 1 + 1-dimensional Toda field the-
ories (ATFT) is reported. Thus the method, proposed in [1] for sys-
tems with finite number of degrees of freedom is generalized to infinite-
dimensional Hamiltonian systems. The construction method is ilus-
trated on an explicit nontrilial example RHF of E(1)

6 ATFT.
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1. INTRODUCTION
To each simple Lie algebra g one can relate Toda field theory (TFT) in

1 + 1 dimensions. It allows Lax representation: [L,M ] = 0, where L and M
are first order ordinary differential operators, see e.g. [2, 3, 4, 5, 6, 7]:

Lψ ≡
(

i
d

dx
− iqx(x, t)− λJ0

)
ψ(x, t, λ) = 0, (1)

Mψ ≡
(

i
d

dt
− 1

λ
I(x, t)

)
ψ(x, t, λ) = 0. (2)

whose potentials take values in g. Here q(x, t) ∈ h - the Cartan subalgebra
of g, ~q(x, t) = (q1, . . . , qr) is its dual r-component vector, r = rank g, and

J0 =
∑
α∈π

Eα, I(x, t) =
∑
α∈π

e−(α,~q(x,t))E−α. (3)
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By πg we denote the set of admissible roots of g, i.e. πg = {α0, α1, . . . , αr}
where α1, . . . , αr are the simple roots of g and α0 is the minimal root of
g. The corresponding TFT is known as the affine TFT. The Dynkin graph
that corresponds to the set of admissible roots of g is called extended Dynkin
diagrams (EDD). The equations of motion are of the form:

∂2~q

∂x∂t
=

r∑

j=0

njαje
−(αj ,~q(x,t)), (4)

where nj are the minimal positive integers for which
∑r

j=0 njαj = 0. The
present paper extends the ideas of [8] and [9] to the ATFT related to the
exceptional simple Lie algebra E6; for finite Toda chains see [10, ?, 1, 11].

2. THE REDUCTION GROUP
The operators L and M are invariant with respect to the reduction group

GR ' D〈 where h is the Coxeter number of g. It is generated by two elements
satisfying gh

1 = g2
2 = (g1g2)2 = 11 which allow realizations both as elements

in Aut g and in ConfC. The invariance condition has the form [2]:

Ck(U(x, t, κk(λ))) = U(x, t, λ), Ck(V (x, t, κk(λ))) = V (x, t, λ), (5)

where U(x, t, λ) = −iqx(x, t)− λJ0 and V (x, t, λ) = − 1
λI(x, t). Here Ck are

automorphisms of finite order of g, i.e. Ch
1 = C2

2 = (C1C2)2 = 11 while κk(λ)
are conformal mappings of the complex λ-plane. The algebraic constraints
(5) are automatically compatible with the evolution. A number of nontrivial
reductions of nonlinear evolution equations can be found in [12, 13].

3. SPECTRAL PROPERTIES OF THE LAX OPERATOR
The reduction conditions (5) lead to rather special properties of the op-

erator L. Along with L we will use also the equivalent system:

Lm(x, t, λ) ≡ i
dm

dx
+ iqxm(x, t, λ)− λ[J0,m(x, t, λ)] = 0, (6)

where m(x, t, λ) = ψ(x, t, λ)eiJ0xλ. Combining the ideas of [14] with the
symmetries of the potential (5) we can construct a set of 2h fundamental
analytic solutions (FAS) mν(x, t, λ) of (6) and prove that (see [12, 7]):

1. the continuous spectrum Σ of L fills up 2h rays lν passing through the
origin: λ ∈ lν : arg λ = (ν − 1)π/h;

2. mν(x, t, λ) is a FAS of (6) analytic with respect to λ in the sector
Ων : (ν − 1)π/h ≤ arg λ ≤ νπ/h satisfying limλ→∞mν(x, t, λ) = 11;
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3. to each lν one relates a subalgebra gν ⊂ g such that gν ∩ gµ = ∅ for
ν 6= µ mod (h) and ∪h

ν=1gν = g. The symmetry ensures that each of
the subalgebras gν is a direct sum of sl(2)-subalgebras;

4. on Σ the FAS mν(x, t, λ) satisfy

mν(x, t, λ) = mν−1(x, t, λ)Gν(x, t, λ), λ ∈ lν , (7)
Gν(x, t, λ) = e−i(λJ0x+f(λ))tG0,ν(λ)ei(λJ0x+f(λ))t ∈ Gν , (8)

where Gν is the subgroup with Lie algebra gν and f(λ) is determined
by the dispersion law of the NLEE: f(λ) =

∑r
k=0 E−αk

/λ;

5. the FAS of (6) satisfy:

C̄1(mν(x, t, ωλ)) = mν−2(x, t, λ), λ ∈ lν−2, (9)

where C̄1 is equivalent to the Coxeter automorphism [15]:

C̄1(X) ≡ C−1
1 XC1, C1 = e

2πi
h

Hρ , ρ =
1
2

∑

α>0

α; (10)

obviously Ch
1 = 11 and C̄1(J0) = ω−1J0;

6. the FAS mν(x, t, λ) satisfy one of the following two involutions:

C̄2(mν(x, t, λ∗))† = C2(m−1
2h−ν+1(x, t, λ)), (11)

where C2, C2
2 = 11 is conveniently chosen Weyl group element, or

(mν(x, t,−λ∗))∗ = mh−ν+1(x, t, λ). (12)

These relations lead to the following constraints for the sewing functions
G0,ν(λ) and the minimal set of scattering data:

C̄1(G0,ν(ωλ)) = G0,ν−2(λ), (13)

C̄2(G
†
0,ν(λ

∗)) = G−1
0,2h−ν+1(λ), (14)

G∗
0,ν(−λ∗) = G0,h−ν+1(λ). (15)

If L has no discrete eigenvalues the minimal set of scattering data is provided
by the coefficients of G0,1(λ), λ ∈ l1 and G0,2(λ), λ ∈ l2. All the other sewing
functions G0,ν(λ) can be determined from them by eqs. (13)–(15).

4. REAL HAMILTONIAN FORMS
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The Lax representations of the ATFT models (see e.g. [2, 3, 4, 16, 6] and
the references therein) are related mostly to the normal real form of the Lie
algebra g, see [17].

Our aim here is to:

1. generalize the ATFT to complex-valued fields ~q C = ~q 0 + i~q 1, and to

2. describe the family of RHF of these ATFT models.

We also provide a tool generalizing of the one in [1] for the construction
of new inequivalent RHF’s of the ATFT. The ATFT for the algebra sl(n) can
be written down as an infinite-dimensional Hamiltonian system as follows:

dqk

dt
= {qk,HATFT}, dpk

dt
= {pk,HATFT}, (16)

HATFT =
∫ ∞

−∞
dx

(
1
2
(~p(x, t), ~p(x, t)) +

r∑

k=0

e−(~q(x,t),αk)

)
, (17)

where ~q(x, t) and ~p = ∂~q/∂t are the canonical coordinates and momenta
satisfying canonical Poisson brackets:

{qk(x), pj(y)} = δjkδ(x− y). (18)

Next we define the involution C acting on the phase space Mas follows:

1) C(F (pk, qk)) = F (C(pk), C(qk)),
2) C ({F (pk, qk), G(pk, qk)}) = {C(F ), C(G)} ,

3) C(H(pk, qk)) = H(pk, qk).

Here F (pk, qk), G(pk, qk) and the Hamiltonian H(pk, qk) are functionals on
M depending analytically on the fields qk(x, t) and pk(x, t).

The complexification of the ATFT is rather straightforward. The result-
ing complex ATFT (CATFT) can be written down as standard Hamiltonian
system with twice as many fields ~q a(x, t), ~p a(x, t), a = 0, 1:

~p C(x, t) = ~p 0(x, t) + i~p 1(x, t), ~q C(x, t) = ~q 0(x, t) + i~q 1(x, t), (19)

{q0
k(x, t), p0

j (y, t)} = −{q1
k(x, t), p1

j (y, t)} = δkjδ(x− y). (20)

The densities of the corresponding Hamiltonian and symplectic form equal

HC
ATFT ≡ Re HATFT(~p 0 + i~p 1, ~q 0 + i~q 1)

=
1
2
(~p 0, ~p 0)− 1

2
(~p 1, ~p 1) +

r∑

k=0

e−(~q 0,αk) cos((~q 1, αk)), (21)

ωC = (d~p 0 ∧ id~q 0)− (d~p 1 ∧ d~q 1). (22)
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The family of RHF then are obtained from the CATFT by imposing an
invariance condition with respect to the involution C̃ ≡ C ◦ ∗ where by ∗ we
denote the complex conjugation. The involution C̃ splits the phase space MC

into a direct sum MC ≡ MC
+⊕MC− where MC

+ = M0⊕iM1, MC− = iM0⊕M1,.
The phase space of the RHF is MR ≡ MC

+. By M0 and M1 we denote the
eigensubspaces of C, i.e. C(ua) = (−1)aua for any ua ∈ Ma.

Thus to each involution C satisfying 1) - 3) one can relate a RHF of the
ATFT. Due to the condition 3) C must preserve the system of admissible
roots of g; such involutions can be constructed from the Z2-symmetries of
the extended Dynkin diagrams of g studied in [6].

5. EXAMPLE: E(1)
6 TODA FIELD THEORIES

The set of admissible roots for this algebra is

α1 =
1
2
(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), α2 = e1 + e2, (23)

α3 = e2 − e1, α4 = e3 − e2, α5 = e4 − e3, α6 = e5 − e4,

α0 = −1
2
(e1 + e2 + e3 + e4 + e5 − e6 − e7 + e8),

where α1, . . . , α6 form the set of simple roots of E6 and α0 is the minimal
root of the algebra. This is the standard definition of the root system of E6

embedded into the 8-dimensional Euclidean space E8. The root space E6 of
the algebra E6 is the 6-dimensional subspace of E8 orthogonal to the vectors
e7 + e8 and e6 + e7 + 2e8. Thus any vector ~q belonging to E6 has only 6
independent coordinates and can be written as:

~q =
5∑

k=1

qkek + q6e
′
6, e′6 =

1√
3
(e6 + e7 − e8). (24)

Let us fix up the action of the involution C on a generic vector ~q in E8 by:

C(qk) = −q5−k +
1
2

4∑

m=1

qm, for k = 1, . . . , 4 (25)

= q13−k − 1
2

8∑

m=5

qm, for k = 5, . . . , 8. (26)

This action is compatible with the Z2-symmetry C# of the extended Dynkin
diagram (see fig. 1) and reflects an involution of the Kac-Moody algebra
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E(1)
6 , see [18]. It acts on the root space as follows:

C#ek = −e5−k +
1
2

4∑

m=1

em, for k = 1, . . . , 4 (27)

= e13−k − 1
2

8∑

m=5

em, for k = 5, . . . , 8. (28)

C#α1 = α6, C#α3 = α5, C#α‖ = α‖, ‖ = ′,∈,4.

The involution C# splits the root space E6 into a direct sum of its eigensub-
spaces: E6 = E+ ⊕ E− with dimE+ = 4, dimE− = 2. The vectors:

ẽ1 =
1
2
(e5 −

√
3e′6), ẽ2 =

1
2
(e1 + e2 + e3 + e4),

ẽ3 =
1
2
(−e1 − e2 + e3 + e4), ẽ4 =

1
2
(−e1 + e2 − e3 + e4), (29)

ẽ5 =
1
2
(−e1 + e2 + e3 − e4), ẽ6 =

1
2
(
√

3e5 + e′6).

form an orthonormal basis in E6. The first four satisfy C#ẽk = ẽk, k =
1, . . . , 4, so they span E+; the last two span E− because C#ẽj = −ẽj , j = 5, 6.
In terms of ẽk the admissible root system of F(1)

4 takes the standard form:

β0 = −ẽ2 − ẽ1, β1 =
1
2
(ẽ1 − ẽ2 − ẽ3 − ẽ4),

β2 = ẽ2 − ẽ3, β3 = ẽ4, β3 = ẽ3 − ẽ4. (30)

satisfying β0 + 2β2 + 3β4 + 4β3 + 2β1 = 0. Let us take the complex vector
~q(x, t) = ~q 0(x, t) + i~q 1(x, t) ∈ E6 (i.e., of the form (24)) and let ~p(x, t) =
∂~q/∂x. Let us denote their projections onto E± by ~q± and ~p± respectively.
Then the densities HR∞, ωR1 for the RHF of AFTF equal:

HR∞ =
1
2

(
(~p 0

+(x, t), ~p 0
+(x, t))− (~p 0

−(x, t), ~p 0
−(x, t))

)
+ e−(~q 0

+(x,t),β0)

+ 2e−(~q 0
+(x,t),β1) cos((~q 1

−(x, t), ẽ5 +
√

3ẽ6)) + 2e−(~q 0
+(x,t),β2) (31)

+ 4e−(~q 0
+(x,t),β3) cos((~q 1

−(x, t), ẽ5)) + 3e−(~q 0
+(x,t),β4),

ωR1 =
(

δ~p+(x)∧
′
δ~q+(x)

)
−

(
δ~p−(x)∧

′
δ~q−(x)

)
, (32)

If we put ~q−(x, t) = 0 then also ~p−(x, t) = 0 and we get the reduced ATFT
related to the Kac-Moody algebra F(1)

4 [6].
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