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THREE-PION CORRELATIONS IN HEAVY-ION COLLISIONS:
A TEST FOR q,p -BOSE GAS MODEL

A. M. Gavrilik1

1 N.N.Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

Abstract.

We perform, within the q-Bose gas model as well as its two-parameter
extended q,p-Bose gas model, the combined study of two- and three-pion
correlations using our formulas for the (q- or q,p-dependent) correla-
tion functions intercepts C(2)(K,K), C(3)(K,K,K), their combination
r(3)(K,K,K), and then confront them with the existing data on pion
correlations from the experiments at CERN SPS and RHIC. We ex-
hibit the peculiar explicit dependence of C(2)(K,K), C(3)(K,K,K),
and r(3)(K,K,K) on pions’ mean momenta, especially interesting for
low momenta. The approach is based on the assumption of complete
chaoticity of the emitting sources, in contrast with other approaches to
simultaneous description of two- and three-pion correlations, in terms
of effective parameters (including index of partial non-chaoticity).
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1. INTRODUCTION
The approach based on multimode system of q-deformed oscillators and

the related model of ideal gas of q-bosons, aimed to effectively describe in
experiments on relativistic heavy-ion collisions the observed non-Bose type
behaviour of the intercept (”strength”) λ(2) ≡ C(2)(K, K)−1 of two-pion cor-
relation function C(2)(p1, p2), has been proposed in [1, 2]. Its real efficiency,
for both pions and kaons, was shown in [3]. Main point of the approach is
the assumed perfect chaoticity of emitting sources; so, λ(2) implies other,
than the exploited in some treatments partial coherence (non-chaoticity),
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reason(s) for deviating from pure Bose-type values. Three-particle correla-
tion functions C(3)(p1, p2, p3) of identical pions (or kaons) are also important,
encoding more information [4] on the space-time geometry and dynamics of
the emitting sources. A special combination r(3)(p1, p2, p3) of the two- and
three-pion correlation functions, proposed in [4], is very useful for the anal-
ysis of data since, in it, the effects of long-lived resonances cancel out.

In [5], the results of q-Bose gas based approach were further extended:
(i) for q-Bose gas model, in both the Arik-Coon (AC) and the Biedenharn-
Macfarlane (BM) versions, the intercepts of n-particle correlation functions
have been derived; (ii) for the two-parameter extended q,p-Bose gas model,
a closed form of n-particle correlation function intercepts has been obtained.
This general expression yields AC and BM case formulas as particular cases.

Below, within the q-Bose gas model and its extension (q,p-Bose gas
model), we present the combined analysis of two- and three-pion correlation
functions intercepts using our formulas for C(2)(K,K), C(3)(K,K,K), and
the combination r(3)(K,K,K). A comparison with the existing data on pion
correlations drawn in the SPS and RHIC experiments is made. We stress
the utmost importance of the dependence of C(2)(K,K), C(3)(K,K,K), and
r(3)(K,K,K) on pions’ mean momenta, for both the small and the asymp-
totically large values of momenta.

The principal feature of our models is that these are based on the as-
sumption of complete chaoticity of the emitting sources, in contrast with
other approaches to the description of two- and three-pion correlations by
means of the effective parameters, such as partial non-chaoticity (to which
the intercepts are related) and a core-halo fraction [6].

2. q-DEFORMED AND q, p-DEFORMED OSCILLATORS
We first give a necessary setup on the two-parameter qp-deformed oscil-

lator and its best known particular cases of q-oscillators. Set of (independent
modes of) q,p-deformed oscillators obey the relations [7]

AiA
†
j − qδijA†jAi = δijp

N
(qp)
i , AiA

†
j − pδijA†jAi = δijq

N
(qp)
i , (1)

and those with N
(qp)
i . Besides, with X a number or an operator,

A†iAi = [[N (qp)
i ]]qp , [[X]]qp ≡ (qX − pX)/(q − p) . (2)

For an operator X, the q,p-bracket [[X]]qp is meant as formal series.
The p=1 case yields the AC-type q-oscillators with the relations [8]

aia
†
j − qδija†jai = δij , [ai, aj ] = [a†i , a

†
j ] = 0 , (3)
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and those for Ni. Here −1≤q≤1; differing modes are independent. Vectors
|n1, . . . , ni, . . .〉 are got from |0, 0, . . .〉 as usual, and a†i act as

〈. . . , ni+1, . . . |a†i | . . . , ni, . . .〉 =
√
bni+1c

where for the AC case the ”basic numbers” brc ≡ (1− qr)/(1− q), the p=1
limit of [[r]]qp, appear. As q → 1, the brc resp. bAc yields r resp. A. For
−1≤q≤1 the operators a†i , ai are mutual conjugates. Note that a†iai depends
on the number operator Ni nonlinearly (compare with (2)):

a†iai = bNic . (4)

Only at q = 1 the familiar equality a†iai = Ni is recovered.
At p=q−1, eq. (1) yields the q-oscillators of BM type [9] such that

bib
†
j − qδijb†jbi = δijq

−Nj , [bi, bj ] = [b†i , b
†
j ] = 0 . (5)

The q-Fock space is constructed likewise; now, instead of basic numbers, the
”q-bracket” and ”q-numbers” are used:

b†ibi = [Ni]q , [r]q ≡ (qr − q−r)/(q − q−1) . (6)

At q = 1, equality b†ibi = Ni is recovered. For the BM case (5) we set

q = exp(iθ) , 0 ≤ θ < π/2 . (7)

3. STATISTICAL q-DEFORMED DISTRIBUTIONS

For the dynamical multi-particle (multi-pion, multi-kaon, ...) system, we
adopt the model of ideal gas of q- or q, p-bosons. The Hamiltonian is

H =
∑

ωiNi , ωi =
√

m2 + K2
i , (8)

where Ni is one of the above three versions of the number operator and ′i′

labels different modes. The (unique, non-interacting) choice (8) of Hamil-
tonian implies additive spectrum [10]. The 3-momenta of particles take
discrete values (the system is in a large finite box of volume ∼ L3). To
evaluate thermal averages (with β = 1/T , Boltzmann constant k = 1), use

〈A〉 = Sp(Aρ)/Sp(ρ) , ρ = e−βH .

For the AC q-bosons, the q-distribution is found as [10]:

〈a†iai〉 = (eβωi − q)
−1

. (9)
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This is the usual Bose-Einstein one if q → 1. At q = −1 (q = 0) the q-
distribution (9) reduces, formally, to Fermi-Dirac (Boltzmann) case.

For BM-type q-bosons, the Hamiltonian again is (8), now with Ni. We
get 〈q±Ni〉 = (eβωi − 1)/(eβωi − q±1). The q-distribution is found [1, 10] as

〈b†ibi〉 =
eβωi − 1

e2βωi − 2 cos θ eβωi + 1
(10)

which is real: q + q−1 = [2]q = 2 cos θ. It is such that at q 6= 1 the function
f(K) ≡ 〈b†b〉(K) in (10) lies in between the Bose-Einstein curve and the
classical Boltzmann one. The same is true of the AC q-distribution (9).

The one-particle momentum space distribution of q, p-bosons is

〈A†iAi〉 = (eβωi − 1)/{(eβωi − p)(eβωi − q)} , (11)

see [11]. Clearly, (9) or (10) are its p = 1 or p = q−1 particular cases.
4. n-PARTICLE CORRELATIONS OF qp-BOSONS

Most general result for the q,p-Bose gas model (of q,p-oscillators) is given
in [5]. With H =

∑
ωiN

(qp)
i , the n-particle monomode distribution

〈(A†i )n(Ai)n〉 =
[[n]]qp! (eβωi − 1)∏n
r=o(eβωi − qrpn−r)

, (12)

[[m]]qp! = [[1]]qp[[2]]qp · · · [[m− 1]]qp[[m]]qp ,

results in the n-th order intercept λ
(n)
q,p ≡ 〈A†nAn〉

〈A†A〉n − 1 (omitting ’i’):

λ(n)
q,p = [[n]]qp!

(eβω − p)n(eβω − q)n

(eβω − 1)n−1
∏n

k=0(eβω − qn−kpk)
− 1 . (13)

This provides generalization both to the n-th order of correlations and to
the two-parameter (q,p-)deformation [5].

If βω →∞ (asymptotics of large momenta), the intercepts λ
(n)
q,p simplify:

λ(n), asympt
q,p = −1 + [[n]]qp! = −1 +

n−1∏

k=1

( k∑

r=0

qrpk−r
)

. (14)

For each case (AC, BM, and q,p-generalization) the asymptotics of n-th order
intercept is nothing but the corresponding deformation of n-factorial (the
usual n! yields the intercept of pure Bose-Einstein n-particle correlation).
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For AC case, set p = 1 in the n-particle monomode distribution (12) and
get the intercept λ(n) ≡ 〈a†n an〉

〈a†a〉n − 1 of n-particle correlation function:

λ
(n)
AC = −1 +

bnc! (eβω − q)n−1

∏n
r=2(eβω − qr)

. (15)

Asymptotically at βω →∞ the λ
(n)
AC depends on the q-parameter only, i.e.

λ
(n), asympt.
AC = −1 + bnc! = −1 +

n−1∏

k=1

( k∑

r=0

qr
)

. (16)

This is remarkable, and should be tested using numerical data for pions’ and
kaons’ intercepts extracted in the experiments on heavy ion collisions.
5. TWO- AND THREE-PARTICLE (q-BOSON) CORRELATIONS

AC-type q-bosons. From (15), the intercepts of order 2 and 3 read:

λ
(2)
AC ≡

〈a†a†aa〉
〈a†a〉2 − 1 = −1 +

(1 + q)(eβω − q)
eβω − q2

= q
eβω − 1
eβω − q2

, (17)

λ
(3)
AC ≡

〈a†3a3〉
〈a†a〉3 − 1 = −1 +

(1 + q)(1 + q + q2)(eβω − q)2

(eβω − q2)(eβω − q3)
, (18)

with respective βω →∞ asymptotics (compare with (16)):

λ
(2), asympt.
AC = q , λ

(3), asympt.
AC = q(2 + 2q + q2) . (19)

BM-type q-bosons. The intercepts of 2nd and 3rd order correlations are

λ
(2)
BM = −1 +

〈b†b†bb〉
〈b†b〉2 = −1 +

2 cos θ(t + 1− cos θ)2

t2 + 2(1− cos2 θ)t
, (20)

λ
(3)
BM = −1 +

[2]q[3]q (e2βω − 2eβω cosθ + 1)2

(eβω − 1)2(e2βω − 2eβω cos(3θ) + 1)
(21)

where t ≡ cosh(βω)− 1. Asymptotics βω →∞ looks as

λ
(2), asympt.
BM = −1 + [2]q = −1 + 2 cos θ , (22)

λ
(3), asympt.
BM = −1 + [2]q[3]q = −1 + 2 cos θ (4 cos2 θ − 1) . (23)

6. COMPARISON WITH EXPERIMENTAL DATA
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The properties of the two-particle correlation intercepts (17) and (20)
of AC and BM q-bosons were analyzed in detail in [1, 2]. Moreover, in [3]
it was shown that the intercept λ

(2)
AC with fixed q = 0.63 (λ(2)

BM with fixed
θ = 28.5◦) nicely fit the experimental data for positive (negative) pions.

Here in Fig. 1, the shape of the intercepts λ
(3)
AC, λ

(3)
BM from (18), (21) is

shown. For large |K|, the asymptotical saturation given by the q (AC case
(19)) or by the θ (BM case (23)) is manifest, at any fixed temperature.
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Figure 1: Shape of λ
(3)
AC (left) and λ

(3)
BM (right) versus pions’ mean momentum

|K| (GeV/c). Of each two merging curves, T =120 MeV for the upper and
T =180 MeV for the lower. The values q=0.98, 0.8, 0.63, 0.5, 0.4142, 0.2 label
pairs of AC-curves (from top down), and θ = π/30, π/14, π/7, π/6, π/5, π/4
label pairs of BM-curves (from top down).

Now confront the q,p-Bose gas (q,p real) correlation intercepts of order
2 and 3, i.e. n = 2, 3 in (13), with available data on pions [12]. If we equate
λ

(2)
q,p to 0.46, λ

(3)
q,p to 4.35 (note 4.35 is unrealistic for pions), we get the two

distant surfaces in Fig. 2 (left). However, equating the intercepts to (central
values of) the NA44 data [12] λ(2),exp. = 0.57±0.04 and λ(3),exp. = 1.92±0.49,
we arrive at Fig. 2 (right), where the resulting two surfaces almost coincide.
Thus, we see that for a whole range of w ≡ βω the q,p-Bose gas model, due
to q and p, is able to jointly describe the data on λ(2),exp. and λ(3),exp..
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Figure 2: The functions w ≡ βω of variables q, p, given implicitly by equating
λ

(2)
p,q = 0.46, λ

(3)
pq = 4.35 (left) and by λ

(2)
p,q = 0.57, λ

(3)
pq = 1.92 (right).

The order 2 and 3 correlations are involved in the expression [4]

r(3)(p1, p2, p3) ≡ C(3)(p1, p2, p3)−C(2)(p1, p2)−C(2)(p2, p3)−C(2)(p3, p1)+2

2
√(

C(2)(p1, p2)−1
) (

C(2)(p2, p3)−1
) (

C(2)(p3, p1)−1
)

and (set p1 = p2 = p3 = K) in the quantity

r0(K) ≡ r(3)(K,K,K) =
1
2

λ(3)(K)− 3λ(2)(K)
(
λ(2)(K)

)3/2
(24)

made of intercepts λ(3)(K) ≡ C(3)(K)−1 and λ(2)(K) ≡ C(2)(K)−1.
Fig. 3 in its left (right) panel shows the behavior of r0(K) with the AC

(BM) type intercepts. As seen, very peculiar is the behaviour of r0(K)
for small mean momenta in the BM case (right). It would be extremely
interesting to reveal such a behavior in the future experiments, especially,
possible negative (or close to zero) values of r0(K) at small |K|. Present
data [12] on the r0 values can be placed on our curves, but it is unclear to
which values of the momentum |K| those r0(K) actually correspond.

To conclude, we believe the q,p-Bose gas model is capable to describe
the peculiar features of 2- and 3-pion correlations in relativistic heavy ion
collisions. To draw further conclusions about adequacy of the model, about
physical meaning and values of the parameters q, p, more data are needed.

My sincere thanks are to the organizers of BW2005 especially Goran
Djordjevic for kind invitation, support and remarkable hospitality. I also
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Figure 3: Shape of r0(K) versus pions’ mean momentum |K| (GeV/c) for
the AC (left) and BM (right) cases of intercepts λ(2), λ(3) in (24). Values of
the temperature and of the parameter q or θ are like in Fig. 1.
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