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Abstract. We consider here noncommutative spaces and their sym-
metries. For the two special examples of noncommutative spaces the
deformed Poincaré symmetry is constructed.
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1. INTRODUCTION

The talk given by the author is based on the common work with Paolo
Aschieri, Christian Blohmann, Frank Meyer, Peter Schupp and Julius Wess
[1]. The concept of symmetry is very important in physics. Classically, sym-
metries are described by Lie groups or Lie algebras and the physical space is
the representation space of the symmetry algebra. Therefore, the question
arises if one can introduce the noncommutative (deformed) spaces as repre-
sentation spaces of some symmetry algebras. It turns out that this is possible
in the framework of Hopf algebras and quantum groups [2]. Here we consider
two examples of deformed Lorentz symmetry given in terms of Hopf alge-
bras. We start with the short review of noncommutative (deformed) spaces
and their representation on the space of commuting coordinates. Then we
concentrate on the two special examples, the θ-deformed and the κ-deformed
space and construct the deformation of the classical Poncaré algebra using
the inversion of the ?-product. In the κ-deformed case, the deformation of
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the Poincaré algebra that is different from the one known in the literature
[3] is obtained.

2. NONCOMMUTATIVE SPACES

Definition

Noncommutative (deformed) space is generated by n + 1 abstract coor-
dinates x̂µ which fulfil

[x̂µ, x̂ν ] = iΘµν(x̂), µ = 0, . . . n, (1)

where Θµν(x̂) is an arbitrary polynomial of coordinates [4], [5]. More pre-
cisely, the noncommutative space Âx̂ is the associative algebra, freely gen-
erated by x̂µ coordinates and divided by the ideal generated by (1). The
elements of this space are all possible polynomials in the coordinates x̂µ.
Before proceeding further, we clarify the notation we use. Coordinates x̂µ

generate the abstract algebra Âx̂, while the operators ∂̂ρ, L̂αβ, . . . are maps
of the abstract algebra Âx̂ into itself. Variables without the hat symbol, like
xµ, ∂ρ, . . . are usual commutative variables. Sometimes we use Ax to denote
the space of commuting coordinates. The defining relation of the deformed
space (1) is very general and one usually consideres some special examples
of it. Among them there are three very important ones

Canonical or θ-deformed spaces [x̂µ, x̂ν ] = iθµν , (2)
Lie algebra deformed spaces [x̂µ, x̂ν ] = iCµν

λ x̂λ, (3)

q-deformed spaces x̂µx̂ν =
1
q
Rµν

ρσx̂ρx̂σ. (4)

In the case of θ-deformed spaces [6], θµν = −θνµ is an antisymmetric constant
matrix of mass dimension −2. For Lie algebra deformed spaces [3], [7] Cµν

λ

are Lie algebra structure constants of mass dimension −1. And finally, Rµν
ρσ

is the dimensionless R-matrix of the quantum space [2]. This three examples
fulfil the Poincaré-Birkoff-Witt (PBW) property.

Representation on the space of commuting coordinates

The deformation quantisation allows us to to describe the properties
of a noncommutative space in a perturbative way, order by order in the
deformation parameter. In the zeroth order the commutative space-time is
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obtained. The main idea of the deformation quantisation is to represent
a noncommutative space on the space of commuting coordinates. PBW
property enables us to map an arbitrary element f̂(x̂) of Âx̂ to the space
of commuting coordinates. To extend this vector space isomorphism to an
algebra morphism one has to map the multiplication in the abstract algebra
Âx̂ to the space of commuting coordinates

f̂ · ĝ(x̂) 7→ f ? g(x) ∈ Ax. (5)

The new product in Ax is noncommutative and we call it the star product
(?-product) of two functions. The algebra of noncommuting coordinates
Âx̂ is then isomorphic to the algebra of commuting variables with the ?-
product as multiplication. In the following we consider two special examples
of noncommutative spaces, the θ-deformed space and the κ-deformed space.

θ-deformed space

In the case of the θ-deformed space (2) the ?-product is given by the
Moyal-Weyl ?-product [9]

f ? g (x) = lim
x→y

e
i
2
θρσ ∂

∂xρ
∂

∂yσ f(x)g(y) (6)

=
∞∑

n=1

( i

2

)n 1
n!

θρ1σ1 . . . θρnσn

(
∂ρ1 . . . ∂ρnf(x)

)(
∂σ1 . . . ∂σng(x)

)
.

The abstract derivative ∂̂µ that is consistent with (2) fulfils

[∂̂ρ, x̂
µ] = δµ

ρ . (7)

Its representation on the space of commuting coordinates is given by the
usual partial derivative

∂̂ρ 7→ ∂?
ρ = ∂ρ (8)

and it has the undeformed Leibniz rule

(∂?
ρ ? (f ? g)) = ∂ρ(f ? g) = (∂?

ρ ? f) ? g + f ? (∂?
ρ ? g)

= (∂ρf) ? g + f ? (∂ρg). (9)
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κ-deformed space

The κ-deformed space is a special example of the Lie-algebra type of
deformation (3). The coordinates x̂µ fulfil

[x̂µ, x̂ν ] = iCµν
ρ x̂ρ, (10)

where
Cµν

ρ = a(δµ
nδν

ρ − δν
nδµ

ρ ), µ = 0, . . . , n. (11)

Latin indices denote the undeformed dimensions, n denotes the deformed
dimension and Greek indices refer to all n + 1 dimensions. The constant
deformation vector aµ of length a points in the n-th spacelike direction,
an = a. The parameter a is related to the frequently used parameter κ as
a = 1/κ. Written more explicitly (10) reads

[x̂n, x̂l] = iax̂l, [x̂k, x̂l] = 0; k, l = 0, 1, . . . , n− 1. (12)

This space has a quantum group symmetry given in terms of the κ-deformed
Poincaré Hopf algebra

Algebra sector

[∂̂µ, ∂̂ν ] = 0,

[M ij , ∂̂µ] = δj
µ∂̂i − δi

µ∂̂j , [M in, ∂̂n] = ∂̂i,

[M in, ∂̂j ] = δi
j

e2ia∂̂n − 1
2ia

− ia

2
δi
j ∂̂

l∂̂l + ia∂̂i∂̂j ,

[Mµν , Mρσ] = ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ. (13)

Coalgebra sector

∆∂̂n = ∂̂n ⊗ 1 + 1⊗ ∂̂n,

∆∂̂j = ∂̂j ⊗ 1 + eia∂̂n ⊗ ∂̂j . (14)
∆M ij = M ij ⊗ 1 + 1⊗M ij ,

∆M in = M in ⊗ 1 + eia∂̂n ⊗M in + ia∂̂k ⊗M ik. (15)

We do not write here counits and antipodes, but instead refer the reader to
[3]. We see that the algebra sector (13) is deformed as well as the coalgebra
sector (14), (15) (leading to the deformed Leibniz rules). We mention that
one can find the basis in which the algebra sector is undeformed, but the
coalgebra sector remains deformed [10]. In the zeroth order in the defor-
mation parameter a this Hopf algebra reduces to the classical Poncaré Hopf
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algebra. The symmetrically ordered ?-product, expanded up to first order
in the deformation parameter a reads

f ? g (x) = f(x)g(x) +
i

2
Cρσ

λ xλ(∂ρf(x))(∂σg(x)) +O(a2). (16)

3. θ-DEFORMED POINCARÉ ALGEBRA

In this section we construct the symmetry for the θ-deformed space. The
method used is general enough so that we can apply it to the κ-deformed
space in the next section. Under the classical infinitesimal Lorentz transfor-
mations

xµ → x′µ = xµ + xνω µ
ν , ωµν = −ωνµ = const. (17)

the scalar field φ(x) transforms as

δcl
ω φ(x) def= φ′(x)− φ(x) = −xµω λ

µ (∂λφ(x)). (18)

We can rewrite (18) in terms of the ?-product (6)

δωφ = −xµω λ
µ (∂λφ) = −(X?

ω ? φ). (19)

Solving (19) perturbatively one finds up to first order in θ

X?
ω = xµω λ

µ ∂λ − i

2
θρσω λ

ρ ∂λ∂σ +O(θ2) (20)

and the deformed Lorentz transformation of a scalar field is given by

δωφ=−(X?
ω ? φ)

=−(xµω λ
µ ) ? (∂λφ) +

i

2
θρσω λ

ρ (∂σ∂λφ) +O(θ2). (21)

Transformations (21) close in the undeformed algebra

[δ̂ω, δ̂′ω] = δ̂[ω,ω′]. (22)

In the next step we demand (in analogy with the classical Lorentz trans-
formations) that the ?-product of two scalar fields transforms like a scalar
field

δω

(
φ1 ? φ2

)
def= −xµω λ

µ ∂λ

(
φ1 ? φ2

)
. (23)
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This request leads to the deformed Leibniz rule

δω

(
φ1 ? φ2

)
=(δωφ1) ? φ2 + φ1 ? (δωφ2) (24)

− i

2
θρσ

(
(δ∂ρωφ1) ? (∂σφ2) + (∂ρφ1) ? (δ∂σωφ2)

)
+O(θ2),

where δ∂ρωφ1 = −ωλ
ρ(∂λφ1). We rewrite (21) in a more familiar way

δωφ = −1
2
ωαβLαβφ, (25)

where Lαβ is the orbital part of the Lorentz generator Mαβ given by

Lαβ = xα∂β − xβ∂α, (26)

= xα ? ∂β − xβ ? ∂α +
i

2
θρσ(ηρα∂β − ηρβ∂α)∂σ +O(θ2).

In the second line this result is rewritten in terms of the ?-product such that
it also has a meaning in the abstract algebra2. Equation (22) rewritten in
terms of the generators Mαβ reads

[Mρσ,Mαβ ] = ηρβMσα + ησαMρβ − ηραMσβ − ησβMρα. (27)

If derivatives are included as well,

[Mαβ , ∂µ] = ηµα∂β − ηµβ∂α and [∂µ, ∂ν ] = 0 (28)

we see that the algebra sector of the θ-deformed Poincaré transformations
is undeformed. Let us now look at the coproduct for this transformations.
From (24) it follows

∆Mαβ = Mαβ ⊗ 1 + 1⊗Mαβ (29)

+
i

2
θρσ

(
(ηρα∂β − ηρβ∂α)⊗ ∂σ + ∂ρ ⊗ (ησα∂β − ησβ∂α)

)
+O(θ2).

Splitting Mαβ into orbital and spin parts gives

∆Lαβ = Lαβ ⊗ 1 + 1⊗ Lαβ (30)

+
i

2
θρσ

(
(ηρα∂β − ηρβ∂α)⊗ ∂σ + ∂ρ ⊗ (ησα∂β − ησβ∂α)

)
+O(θ2),

∆Σαβ = Σαβ ⊗ 1 + 1⊗ Σαβ . (31)
2In the abstract algebra Lαβ reads

Lαβ = x̂α∂̂β − x̂β ∂̂α +
i

2
θρσ

(
ηρα∂̂β − ηρβ ∂̂α

)
∂̂σ.
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We see that the coproduct for the orbital part of the generator Mαβ is
deformed, while for the spin part we obtain the undeformed coproduct. For
the completeness we rewrite the Leibniz rule (9) in terms of the coproduct

∆∂µ = ∂µ ⊗ 1 + 1⊗ ∂µ. (32)

One can check that these coproducts are coassociative and consistent with
the algebra (27), (28). Adding counits and antipods defines the θ-deformed
Poncaré Hopf algebra3. One should notice that the generators Mαβ do not
close the Hopf algebra themselves since in (29) derivatives appear. Using
different approaches, this result was obtained in [11] also.

Application

Having the θ-deformed Poincaré symmetry at hand, one can construct
theories that are invariant under this symmetry and analyse their properties.
We give one very simple example. Let us consider φ3 theory

L =
1
2
(∂µφ) ? (∂µφ)− m2

2
φ ? φ− λφ ? φ ? φ. (33)

One checks that under the deformed Poincaré transformations this Lagrangian
density transforms as

δωL = −(X?
ω ? L) = −xαω λ

α (∂λL). (34)

To construct the action we use the usual integral and obtain

S =
∫

d4x
(1
2
(∂µφ) ? (∂µφ)− m2

2
φ ? φ− λφ ? φ ? φ

)
. (35)

From (34) it follows that this action is invariant. Using the variational
principle

δS = δ

( ∫
d4x

(
− 1

2
φ ? (∂µ∂µφ)− m2

2
φ ? φ− λφ ? φ ? φ

))

=
∫

d4x δφ(x) ?
(
− 2

1
2
(∂µ∂µφ)− 2

m2

2
φ− 3λφ ? φ

)
(36)

gives the following equation of motion

(∂µ∂µφ) + m2φ + 3λφ ? φ = 0. (37)
3All the results presented in this section are known to all orders in the deformation

parameter [1]. Because of the simplicity only the first order expansions are presented here.
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The other way to obtain (37) (expanded in the deformation parameter) is to
first expand the ?-products in the action (35) and then vary it with respect
to the field φ.

5. κ-DEFORMED POINCARÉ SYMMETRY

Now we apply the technique from the previous section to construct a
deformed symmetry for the κ-deformed space. The underlying idea is to
compare the symmetry obtained in this way with the already known κ-
Poincaré symmetry described shortly in the first section. The transformation
law of a scalar field under the infinitesimal diffeomorphisms is

δξφ = −ξµ∂µφ = −(X?
ξ ? φ)

= −ξµ ? (∂µφ) +
i

2
Cρσ

λ xλ(∂ρξ
µ) ? (∂σ∂µφ) +O(a2), (38)

where ξµ(x) is an arbitrary function. For the special case of translations,
ξµ = bµ = const. (38) gives

δt
ξφ = −bµ ? (∂µφ) = −bµ(∂µφ). (39)

For the Lorentz rotations, ξµ = xνω µ
ν we have

δl
ξφ = −xλω µ

λ ? (∂µφ) +
i

2
Cρσ

λ xλω µ
ρ ? (∂σ∂µφ)

= −1
2
ωαβ(Lαβφ), (40)

where Lαβ = xα∂β − xβ∂α
4. Transformations (39) and (40) close in the

undeformed algebra

[Lµν , Lρσ] = ηµσLνρ + ηνρLµσ − ηµρLνσ − ηνσLµρ,

[∂ρ, ∂σ] = 0,

[Lµν , ∂ρ] = ηνρ∂µ − ηµρ∂ν . (41)

Their coproducts are

∆∂n = ∂n ⊗ 1 + 1⊗ ∂n,

∆∂j = ∂j ⊗ (1− ia

2
∂n) + (1 +

ia

2
∂n)⊗ ∂j +O(a2). (42)

∆Lαβ = Lαβ ⊗ 1 + 1⊗ Lαβ

− ia

2

(
δn
α(∂β ⊗ xλ∂λ − xλ∂λ ⊗ ∂β)− α ←→ β

)
+O(a2). (43)

4Note that Lαβ can also be written in terms of the ?-product in analogy with (26).
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From (43) it is obvious that ∆Lαβ does not close in the algebra of derivatives
and Lorentz generators (Poincaré algebra). Therefore, we have to enlarge the
algebra and include coordinates as well. The way that coordinates appear
in (43) suggests introducing dilatation operator. Inserting ξµ = εxµ with ε
real constant in (38) gives for infinitesimal dilatations

δd
ξφ = −εxµ ? (∂µφ) = −εxµ(∂µφ) = −εDφ. (44)

As the next step we check that generators ∂µ, Lαβ and D close in the unde-
formed algebra5. In addition to (41) we obtain

[D,D] = 0,
[D, ∂µ] = ∂µ,

[D, Lµν ] = 0. (45)

Coproduct of the generator of dilatations is

∆D = D ⊗ 1 + 1⊗D − ia

2

(
∂n ⊗D −D ⊗ ∂n

)
+O(a2). (46)

Coproduct of the Lorentz generators (43) can now be rewritten as

∆Lαβ = Lαβ ⊗ 1 + 1⊗ Lαβ

− ia

2

(
δn
α(∂β ⊗D −D ⊗ ∂β)− α ←→ β

)
+O(a2). (47)

From (47) we see that ∆Lαβ closes in the algebra of ∂µ, Lαβ and D gener-
ators. Adding counits and antipodes we obtain the κ-deformed Weil Hopf
algebra. In this way we have constructed another deformed symmetry for
the κ-deformed space. Comparing this result with the κ-Poincaré Hopf alge-
bra, we see that this two quantum symmetries are not equal. The problem
is that in the ”?-product inversion” approach coordinates naturally appear
and one is forced to exchange Poincaré algebra for a larger one (in this case
Weil algebra). The connection between these two symmetries is still not
understood properly and this is left for the further research.

5This step is obvious. The transformations (39), (40) and (44) are classical transfor-
mations and therefore the algebra is undeformed.
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6. CONCLUSIONS

We presented here two special examples of noncommutative spaces. Based
on the ”inversion of the ?-product method” we constructed the deformed
Poincaré symmetry that acts on these spaces. Using these symmetries in-
variant actions and equations of motion can be obtained. However, the
question of conserved quantities is still not clear. For the example in the
4th sectionone can construct the energy-momentum tensor, but it seems to
be either conserved or symmetric and not both. This remains as an open
question and will be considered in the future.
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