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Abstract. One presents a report concerning the new type of symme-
tries generated by the covariantly constant Killing-Yano tensors that
play the role of complex or hyper-complex structures of the Kählerian
manifolds. Such a Killing-Yano tensor produces simultaneously a Di-
rac-type operator and the generator of a one-parameter Lie group con-
necting this operator with the standard Dirac one. The group of these
continuous transformations can be only U(1) or SU(2). It is pointed
out that the Dirac-type operators given by a hyper-complex structure
form a N = 4 superalgebra whose automorphisms combine isometries
with the SU(2) transformation generated by the hyper-complex struc-
ture.

Key words: Kählerian manifolds, Killing-Yano tensors, Dirac-type
operators, isometries, symmetries, supersymmetries.

1. INTRODUCTION

The quantum physics in curved backgrounds uses operators acting on
spaces of vector, tensor or spinor fields whose properties depend on the ge-
ometry of the manifolds where these objects are defined. A crucial problem is
to find the symmetries having geometrical sources and the related operators.
The problem is not trivial since, beside the evident geometrical symmetry
given by isometries, there are different types of hidden symmetries frequently
associated with supersymmetries that deserve to be carefully studied.
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The isometries are related to the existence of the Killing vectors that
give rise to the orbital operators of the scalar quantum theory commuting
with that of the free field equation. In the theories with spin these operators
get specific spin terms whose form is strongly dependent on the local non-
holonomic frames we choose by fixing the gauge [1, 2]. Recently the theory
of isometries was extended allowing one to pick up well-defined conserved
quantities in theories with matter fields of any spin [3, 4].

Another type of geometrical objects related to the so called hidden sym-
metries or several specific supersymmetries are the Killing-Yano (K-Y) ten-
sors [5] and the Stäckel-Killing (S-K) tensors of any rank. The K-Y tensors
play an important role in theories with spin and especially in the Dirac
theory on curved spacetimes where they produce first order differential op-
erators, called Dirac-type operators, which anticommute with the standard
Dirac one, D [1, 6]. Another virtue of the K-Y tensors is that they en-
ter as square roots in the structure of several second rank S-K tensors that
generate conserved quantities in classical mechanics or conserved operators
which commute with D. The construction of Ref. [1] depends upon the
remarkable fact that the S-K tensors must have square root in terms of
K-Y tensors in order to eliminate the quantum anomaly and produce op-
erators commuting with D [7]. These attributes of the K-Y tensors lead
to an efficient mechanism of supersymmetry especially when the S-K ten-
sor is proportional with the metric tensor and the corresponding roots are
covariantly constant K-Y tensors. Then each tensor of this type, f i, gives
rise to a Dirac-type operator, Di, representing a supercharge of a non-trivial
superalgebra {Di, Dj} ∝ D2δij [8]. It was shown that Di can be produced
by covariantly constant K-Y tensors having not only real-valued components
but also complex ones [9, 10, 11].

In what follows we restrict ourselves only to real-valued K-Y tensors
which represent complex structures defining Kählerian geometries. The main
part of this paper is devoted to the theory of the Dirac-type operators gen-
erated by complex structures.

It is known that in four-dimensional manifolds the standard Dirac op-
erator and the Dirac-type ones can be related among themselves through
continuous or discrete transformations [12, 10]. It is interesting that there
are only two possibilities, namely either transformations of the U(1) group
associated with the discrete group Z4 or SU(2) transformations and discrete
ones of the quaternionic group Q [12, 10, 11]. The first type of symmetry is
proper to Kähler manifolds while the second largest one is characteristic for
hyper-Kähler geometries [12]. We have shown that, in general, there are no
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larger symmetries of this type [11] but here we point out how these could be
embedded with the isometries.

The paper is organized as follows. We start in the second section with the
construction of a simple version of the Dirac theory in manifolds of any di-
mensions. In the next section we briefly present the theory of the Dirac-type
operators produced by K-Y tensors of any rank following to study the special
cases of the Dirac-type operators arising in Kählerian manifolds. Moreover,
the continuous symmetries of these Dirac operators are analyzed We point
out that the triplets of complex structures give rise to triplets of Dirac-type
operators, Di, i = 1, 2, 3 anticommuting with D and among themselves too,
forming thus a basis of a N = 4 superalgebra. Furthermore, we show that in
the case of the hyper-Kähler manifolds, the automorphisms of these super-
algebras combine the mentioned SU(2) specific transformations with those
of a representation of the group of isometries induced by the group SO(3),
of the rotations among the triplet elements.

We note that an extended study of the symmetries and supersymmetries
of the Dirac-type operators, including those produced by complex-valued
K-Y tensors, will appear in [13].

2. THE DIRAC FIELD IN ARBITRARY DIMENSIONS

The theory of the Dirac spinors in arbitrary dimensions depends on the
choice of the manifold and Clifford algebra. In Refs. [11, 13] we present a
simple theory of the Dirac field in arbitrary dimensions. Here we keep all
the notations introduced there. We consider a 2l + 1-dimensional pseudo-
Riemannian manifold M2l+1 whose flat metric η̃ (of its pseudo-Euclidean
model) has the signature (m+,m−) where m++m− = m = 2l+1. This is the
maximal manifold that can be associated to the 2l + 1-dimensional Clifford
algebra [14] acting on the 2l-dimensional space Ψ of the complex spinors ψ =
ϕ̃1⊗ ϕ̃2...⊗ ϕ̃l built using complex two-dimensional Pauli spinors ϕ̃. In this
algebra we start with the standard Euclidean basis formed by the hermitian
matrices γ̃A = (γ̃A)+ (A,B, ... = 1, 2, ..., m) that obey {γ̃A, γ̃B} = 2δAB1
where 1 is the identity matrix. Then it is not difficult to define a new set of
gamma matrices such that

{γA, γB} = 2η̃AB1 . (1)

In this new form, the first m+ matrices γA remain hermitian while the m−
last ones become anti-hermitian. The unitaryness can be restored replacing
the usual Hermitian adjoint with the generalized Dirac adjoint [15].
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Definition 1 We say that ψ = ψ+γ is the generalized Dirac adjoint of the
field ψ if the hermitian matrix γ = γ+ satisfies the condition (γ)2 = 1 and
all the matrices γA are either self-adjoint or anti self-adjoint with respect to
this operation, i.e. γA = γ(γA)+γ = ±γA.

It is clear that the matrix γ play here the role of metric operator giving the
generalized Dirac adjoint of any square matrix X as X = γX+γ.

The isometry group G(η̃) = O(m+,m−) of the metric η̃, with the men-
tioned signature, is the gauge group of the theory defining the principal fiber
bundle. This is a pseudo-orthogonal group that admits an universal cover-
ing group G(η̃) which is simply connected and has the same Lie algebra we
denote by g(η̃). The group G(η̃) is the model of the spinor fiber bundle that
completes the spin structure we need. In order to avoid complications due
to the presence of these two groups we consider here that the basic piece
is the group G(η̃), denoting by [ω] their elements in the standard covariant
parametrization given by the skew-symmetric real parameters ωAB = −ωBA.
Then the identity element of G(η̃) is 1 = [0] and the inverse of [ω] with re-
spect to the group multiplication reads [ω]−1 = [−ω].

Definition 2 We say that the gauge group is the vector representation of
G(η̃) and denote G(η̃) = vect[G(η̃)]. The representation spin[G(η̃)] carried
by the space Ψ and generated by the spin operators

SAB =
i

4

[
γA, γB

]
(2)

is called the spinor representation of G(η̃). The spin operators are the basis
generators of the spinor representation spin[g(η̃)] of the Lie algebra g(η̃).

In what follows we consider the general case of the Dirac theory on
any submanifold Mn ⊂ Mm of dimension n ≤ m whose flat metric η is a
part (or restriction) of the metric η̃, having the signature (n+, n−), with
n+ ≤ m+, n− ≤ m− and n+ + n− = n, such that the gauge group is
G(η) = vect[G(η)] = O(n+, n−). In Mn we choose a local chart (i.e.
natural frame) with coordinates xµ, α, ..., µ, ν, ... = 1, 2, ..., n, and intro-
duce local orthogonal non-holonomic frames using the gauge fields (or ”vil-
beins”) e(x) and ê(x), whose components are labeled by local (hated) in-
dices, α̂, ...µ̂, ν̂, ... = 1, 2, ..., n, that represent a subset of the Latin capital
ones, eventually renumbered. The local indices have to be raised or lowered
by the metric η. The fields e and ê accomplish the conditions

eµ
α̂êα̂

ν = δν
µ , eµ

α̂êβ̂
µ = δβ̂

α̂ (3)
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and orthogonality relations as gµνe
µ
α̂eν

β̂
= ηα̂β̂.

The next step is to choose a suitable representation of the n matrices γα̂

obeying Eq. (1) and to calculate the spin matrices Sα̂β̂ defined by Eq. (2).
Now these are the basis generators of the spinor representation spin[g(η)]
of the Lie algebra g(η), corresponding to the metric η. If n < m there are
many matrices, γn+1, ..., γm, which anticommutes with all the n matrices
γα̂ one uses for the Dirac theory in Mn. We can select one of these extra
gamma-matrices denoting it by γch and matching its phase factor such that
(γch)2 = 1 and (γch)+ = γch. This matrix obeying

{
γch, γµ̂

}
= 0 , µ̂ = 1, 2, ..., n , (4)

is called the chiral matrix since it plays the same role as the matrix γ5 in the
usual Dirac theory, helping us to distinguish between even and odd matrices
or matrix operators.

The gauge-covariant theory of the free spinor field ψ ∈ Ψ of the mass
m0, defined on Mn, is based on the gauge invariant action

S[e, ψ] =
∫

dnx
√

g

{
i

2
[ψγα̂∇α̂ψ − (∇α̂ψ)γα̂ψ]−m0ψψ

}
, (5)

where g = | det(gµν)| and ∇µ = êα̂
µ∇α̂ = ∇̃µ + Γspin

µ are the covariant
derivatives formed by the usual ones, ∇̃µ (acting in natural indices), and the
spin connection

Γspin
µ =

i

2
eβ
ν̂ (êσ̂

αΓα
βµ − êσ̂

β,µ)S ν̂ ·
· σ̂ , (6)

giving ∇µψ = (∂µ + Γspin
µ )ψ. The action (5) produces the Dirac equation

Dψ = m0ψ involving the standard Dirac operator that can be expressed in
terms of point-dependent Dirac matrices as

D = iγµ∇µ , γµ(x) = eµ
α̂(x)γα̂ . (7)

Now we can convince ourselves that our definition of the generalized Dirac
adjoint is correct since γµ = γµ and Γspin

µ = −Γspin
µ such that the Dirac

operator results to be self-adjoint, D = D. Moreover, the quantity ψψ has
to be derived as a scalar, i.e. ∇µ(ψψ) = ∇µψ ψ + ψ∇µψ = ∂µ(ψψ), while
the quantities ψγαγβ...ψ behave as tensors of different ranks.

Using the standard notations for the Riemann-Christoffel curvature ten-
sor, Rαβµν , Ricci tensor, Rαβ = Rαµβνg

µν , and scalar curvature, R =
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Rµνg
µν , we recover the useful formulas

∇µ(γνψ) = γν∇µψ , (8)
[∇µ, ∇ν ]ψ = 1

4Rαβµνγ
αγβψ , (9)

and the identity Rαβµνγ
βγµγν = −2Rανγ

ν that allow one to calculate

D2 = −∇2 + 1
4R 1 , ∇2 = gµν∇µ∇ν . (10)

It remains to complete the operator algebra with new observables from which
we have to select complete sets of commuting observables for defining quan-
tum modes.

3. DIRAC-TYPE OPERATORS RELATED TO K-Y TENSORS

In the classical theory, the hidden symmetries are arising from more gen-
eral isometries defined in the whole phase space which cannot be reduced
to pure coordinate transformations. In a quantum theory it is interesting
to construct new conserved quantities or operators commuting with D, pro-
duced by the S-K or K-Y tensors fields. Here new specific mechanisms have
to be exploited for analyzing the hidden symmetries or several new types of
supersymmetries.

3.1 OPERATORS CONSTRUCTED FROM K-Y TENSORS

The K-Y tensors, f̃ (r), are completely skew-symmetric tensors of rank r
for which the Killing equation reads

f̃
(r)
µ1µ2...(µr;µ) ≡ f̃ (r)

µ1µ2...µr;µ + f̃ (r)
µ1µ2...µ;µr

= 0 . (11)

It was surprising to see that the K-Y tensors are naturally related to the
Dirac theory in curved manifolds since all of them are able to produce first-
order differential operators which commutes or anticommutes with D.

Theorem 1 Given a K-Y tensor f̃ (r) of an arbitrary rank r = 1, 2, ..., the
operator

Y [f̃ (r)] = (−1)riγµ1γµ2 · · · γµr−1

(
f̃

(r) µr
µ1µ2...µr−1 · ∇µr

− 1
2(r + 1)

f̃ (r)
µ1µ2...µr;µγµrγµ

)
(12)

commute with D if r is odd and anticommute with D if r is even.
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Proof: We delegate the proof to Ref. [6].
In general, one can construct new operators commuting with D using the
operators (12) built with the help of arbitrary K-Y tensors. Indeed, given
two K-Y tensors of any rank, f̃ (r1) and f̃ (r2), the new second order operator
K(2) = {Y [f̃ (r1)], Y [f̃ (r2)]} commutes with D whenever r1 + r2 is an even
number. Moreover, in this way we obtain the corresponding factorized S-
K tensor of the second rank that gives rise to the operator K(2) freely of
quantum anomaly. In this manner one can generate new types of operators
that help one to investigate the hidden symmetries and to obtain large sets
of conserved operators that may constitute new (super)algebras. In other
respects, the implication of the K-Y tensors in the quantum theory suggests
us that such tensors with complex-valued components would be also useful
even if from the classical viewpoint these are pointless.

Of a particular interest are the operators built with the help of the second
rank K-Y tensors, f̃ , with real or complex-valued components f̃µν = −f̃νµ

which satisfies the equation (11) for r = 2.

Definition 3 The operators

Df̃ = iγµ
(
f̃ · νµ ·∇ν − 1

6 f̃µν;ργ
νγρ

)
, (13)

given by the second rank K-Y tensors, f̃ , are called Dirac-type operators.

These are non-standard Dirac operators which obey {Df̃ , D} = 0 and can be
involved in new types of genuine or hidden (super)symmetries. Remarkable
superalgebras of Dirac-type operators can be produced by special second-
order K-Y tensors that represent square roots of the metric tensor.

3.2 ROOTS AND THEIR DIRAC-TYPE OPERATORS

Let us start with some technical details and the basic definitions. Given ρ
an arbitrary tensor field of rank 2 defined on a domain of Mn, we denote with
the same symbol 〈ρ〉 the equivalent matrices with the elements ρµ ·

· ν in natural
frames and ρα̂ ·

· β̂ = êα̂
µρµ ·
· νeν

β̂
in local frames. We say that ρ is non-singular on

Mn if det 〈ρ〉 6= 0 on a domain of Mn where the metric is non-singular. This
tensor is said irreducible on Mn if its matrix is irreducible.

Definition 4 The non-singular real or complex-valued K-Y tensor f of rank
2 defined on Mn which satisfies

fµ ·
·αfµβ = gαβ , (14)
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is called an unit root of the metric tensor of Mn, or simply an unit root of
Mn.

It was shown that any K-Y tensor that satisfy Eq. (14) is covariantly
constant [9]

fµν;σ = 0 . (15)

Since Eq. (14) can be written as fµ ·
·αfα ·· ν = −δµ

ν this takes the matrix form

〈f〉2 = −1n , (16)

where the notation 1n stands for the n × n identity matrix. Hereby we
see that the complex structure behave as complex units (e.g. 〈f〉−1 = −〈f〉.
The complex structures represent automorphisms of the tangent fiber bundle
T (Mn) of Mn. In local frames these appear as particular point-dependent
transformations of the gauge group G(η) = vect[G(η)].

The K-Y tensor gives rise to Dirac-type operators of the form (13) which
have an important property formulated in [9].

Theorem 2 The Dirac-type operator Df produced by the K-Y tensor f sat-
isfies the condition

(Df )2 = D2 . (17)

if and only if f is a complex structure.

Proof: The arguments of Ref. [9] show that the condition Eq. (17) is
equivalent with Eqs. (14) and (15). Moreover the square of the Dirac-type
operator

Df = if · νµ ·γ
µ∇ν , (18)

has to be calculated exploiting the identity 0 = fµν;α;β−fµν;β;α = fµσRσ
· ναβ+

fσνR
σ
·µαβ, which gives

Rµναβfµ ·
·σ fν ·

· τ = Rσταβ (19)

and leads to Eq. (17).
Thus we conclude that the equivalence of the condition (17) with Eqs. (14)
and (15) holds in any geometry of dimension n = 2k allowing complex
structures.

Another interesting operator related to f can be defined as follows.

Definition 5 Given the complex structure f , the matrix

Σf =
1
2
fµνS

µν (20)

is the spin-like operator associated to f .
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This is a matrix that acts on the space of spinors Ψ and, therefore, can be
interpreted as a generator of the spinor representation spin[G(η)]. It has
the obvious property Σf = Σf while from (8) and (14) one obtains that it is
covariantly constant in the sense that ∇ν(Σfψ) = Σf∇νψ. Hereby we find
that the Dirac-type operator (18) can be written as

Df = i [D, Σf ] , (21)

where D is the standard Dirac operator defined by Eq. (7). Moreover, one
can deduce that [Σf , D2] = [Σf , (Df )2] = 0 .

With the help of this operator we can built the theory of a symmetry
relating D and Df to each other.

Definition 6 We say that Gf = {[ρ] | ρ = αf, α ∈ R} ⊂ [G(η)] is the
one-parameter Lie group associated to the complex structure f .

The spinor representation of this group, spin(Gf ), is formed by all the trans-
formation matrices

T (αf) = e−iαΣf ∈ spin[G(η)] (22)

depending on the group parameter α ∈ R.

3.3 DIRAC-TYPE OPERATORS IN HYPER-KÄHLER MANIFOLDS

A higher symmetry given by a non-abelian Lie group arises in the case
of the hyper-Kähler geometries.

Definition 7 The triplet f = {f1, f2, f3} of complex structures which sat-
isfy 〈

f i
〉 〈

f j
〉

= −δij1n + εijk〈fk 〉 , i, j, k... = 1, 2, 3 , (23)

represents a hyper-complex structure. A hyper-Kähler manifold is a manifold
whose metric is Kählerian with respect to each different complex structure
f1, f2 and f3.

The results we know indicate that the hyper-Kähler manifolds must be
of dimension n = 4k, k = 1, 2, 3, .... Moreover these are a very important
feature as given by the following theorem.

Theorem 3 If a manifold Mn allows a triplet of complex structures then
this must be Ricci flat (having Rµν = 0).
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Proof: As in the case of any hyper-Kähler manifold, using Eqs. (19) and
(23) we calculate the expression Rµναβf1 αβ = Rµνσβf3 σ ··α(

〈
f3

〉 〈
f1

〉
)αβ =

Rµνσβf3 σ ··αf2 αβ = −Rµναβf1 αβ which vanishes. Furthermore, permutating
the first three indices of R we find the identity

2Rµανβf1 αβ = Rµναβf1 αβ = 0 . (24)

Finally, writing Rµν = Rµανβf1 α ·· τ f1 βτ = −Rµασβf1 σ ·· ν f1 αβ = 0, we draw
the conclusion that the manifold is Ricci flat. The same procedure holds
for f2 or f3 leading to identities similar to (24). Note that the manifolds
possessing only single complex structure (as the Kähler ones) are not forced
to be Ricci flat.

Starting with a triplet f = {f1, f2, f3} satisfying (23) one can construct
a rich set of Dirac-type operators of the form D(~ν) = νiD

i where ~ν is an
unit vector (with ~ν2 = 1) and Di = Df i = i[D, Σi], i = 1, 2, 3, play the role
of a basis.

3.4 SUPERSYMMETRIES AND ISOMETRIES

Beside the types of continuous symmetries we have studied, the pres-
ence of the complex structures gives rise to supersymmetries related to the
isometries in an interesting manner.

In a Kähler manifold, a complex structure f generates its own N = 2 real
superalgebra, df = {D(λ) |D(λ) = λ0D + λ1Df} where D and Df (obeying
{D, Df} = 0, (Df )2 = D2) form a basis.

The case of the hyper-Kähler manifolds is more complicated since a
triplet f gives rise to self-adjoint Dirac-type operators Di = D

i which an-
ticommute with D and present the continuous symmetry discussed in the
previous section. In these conditions a new algebraic structure is provided
by

Theorem 4 If a triplet f accomplishes Eqs. (23) then the corresponding
Dirac-type operators satisfy

{
Di, Dj

}
= 2δijD

2 ,
{
Di, D

}
= 0 . (25)

Proof: If i = j we take over the result of Theorem 2. For i 6= j we take
into account that Mn is Ricci flat finding that Di and Dj anticommute. The
second relation was demonstrated earlier for any complex structure.
Thus it is clear that the operators D and Di (i = 1, 2, 3) form a basis of a
four-dimensional real superalgebra of Dirac operators.
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[4] I. I. Cotăescu, Phys. Rev. D 65, 084008 (2002).

[5] K. Yano, Ann. Math. 55, 328 (1952).

[6] M. Cariglia, Class. Quantum Grav. 21, 1051 (2004).

[7] R. Penrose, Ann. NY Acad. Sci. 224, 125 (1973); R. Floyd, The dy-
namics of Kerr fields, Ph D. Thesis, London, 1973.
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