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GEOMETRY OF THE FUZZY DOUGHNUT
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Abstract. The noncommutative extension of a dynamical 2-dimen-
sional space-time is given and some of its properties discussed. Wick
rotation to euclidean signature yields a surface which has as commuta-
tive limit the donut but in a singular limit in which the radius of the
hole tends to zero.
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1. INTRODUCTION AND NOTATION
There is a very simple argument due to Pauli that the quantum effects of

a gravitational field will in general lead to an uncertainty in the measurement
of space coordinates. It is based on the observation that two ‘points’ on a
quantized curved manifold can never be considered as having a purely space-
like separation. If indeed they had so in the limit for infinite values of the
Planck mass, then at finite values they would acquire for ‘short time intervals’
a time-like separation because of the fluctuations of the light cone. Since the
‘points’ are in fact a set of four coordinates, that is scalar fields, they would
not then commute as operators. This effect could be considered important
at least at distances of the order of Planck length, and perhaps greater. This
is one motivation to study noncommutative geometry. A second motivation,
which is the one we consider ours, is the fact that it is possible to study
noncommutative differential geometry, and there is no reason to assume
that even classically coordinates commute at all length scales. One can
consider for example coordinates as order parameters as in solid-state physics
and suppose that singularities in the gravitational field become analogs of
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core regions; one must go beyond the classical approximation to describe
them. A straightforward and conservative way is to represent coordinates
by operators. The space-time manifold is thus replaced with an algebra
generated by a set of noncommutative ‘coordinates’. The essential element
which allows us to interpret a noncommutative algebra as a space-time is
the possibility [1, 2] to introduce a differential structure on the former.

We define noncommutative ‘space’ as an associative ∗-algebra A gener-
ated by a set of hermitean ‘coordinates’ xi which in some limit tend to the
(real) coordinates x̃i of a manifold; the latter we identify as the classical
limit of the geometry. We suppose that the center of the algebra A is trivial.
The coordinates satisfy a set of commutation relations

[xi, xj ] = ik̄J ij(xk). (1)

The parameter k̄ is introduced to describe the fundamental area scale on
which noncommutativity becomes important. It is presumably of order of
the Planck area Gh̄; the commutative limit is defined by k̄ → 0. The simplest
relation which can be used to define the algebra is

[
xi, xj

]
= ik̄J ij (2)

where J ij are real numbers; it is called the canonical structure.
In order to define the differential structure on A we use a noncommuta-

tive version of Cartan’s frame formalism [3]. In ordinary geometry a vector
field can be defined as a derivation of the algebra of smooth functions; this
definition can be used also when the algebra is noncommutative. A deriva-
tion, we recall, is a linear map which satisfies the Leibniz rule; sometimes
this is modified to a ‘twisted’ Leibniz rule, [4, 5]). The set of all derivations
we denote by Der(A). The classical notion of the moving frame is general-
ized in the following way. The frame on A is a set of n inner derivations ea,
generated by ‘momenta’ pa:

eaf = [pa, f ]. (3)

We assume that the momenta also generate the whole algebra A. For inner
derivations, the Leibniz rule is the Jacobi identity. An alternative way to
define the frame is to use the 1-forms θa dual to ea such that the relation

θa(eb) = δa
b (4)



GEOMETRY OF THE FUZZY DOUGHNUT 235

holds. The module of 1-forms we denote by Ω1(A). To define the left
hand side of the equation (4), that is the basic forms θa, we first define the
differential, exactly as in the classical case, by the condition

df(ea) = eaf, (5)

and the multiplication of 1-forms by elements of the algebra A by

fdg = feagθa, dgf = eagfθa. (6)

Since every 1-form can be written as sum of such terms, the definition of
differential is complete. In particular, since

fθa(eb) = fδa
b = (θaf)(eb), (7)

we conclude that the frame necessarily commutes with all the elements of
the algebra A. The 1-form θ defined as

θ = −paθ
a (8)

can be considered as an analog of the Dirac operator in ordinary geometry.
It implements the action of the exterior derivative on elements of the algebra.
That is

df = − [θ, f ] = [paθ
a, f ] = [pa, f ] θa. (9)

In the case of the canonical commutation rule (2) for example, the frame
is θa = δa

i dxi. From duality we obtain that the momenta are

pa =
1
ik̄

J−1
ai xi. (10)

The equation (10) gives ‘Fourirer transformation’ between the coordinates
and the momenta in this case. The momenta are singular in the limit k̄ → 0.

The differential is real if (df)∗ = df∗. This is assured if the derivations
ea are real: eaf

∗ = (eaf)∗, which is the case if the momenta pa are antiher-
mitean.

Let us mention further properties of the module structure defined by (5-
7). The exterior product is a map from the tensor product of two copies
of the module of 1-forms into the module of 2-forms; we shall identify the
latter as a subset of the former and write the product as

θaθb = P ab
cdθ

c ⊗ θd. (11)



236 M. Burić, J. Madore

The P ab
cd are complex numbers which satisfy the projector condition and

the hermiticity [6]:

P ab
cdP

cd
ef = P ab

ef , P̄ ab
cdP

dc
ef = P ba

ef . (12)

The basis 1-forms anticommute for P ab
cd = 1

2 (δa
c δb

d − δb
cδ

a
d). The exterior

derivative of θa is a 2-form,

dθa = −1
2
Ca

bc θbθc. (13)

The Ca
bc are called the structure elements. They can be chosen to satisfy

Ca
bcP

bc
de = Ca

de. (14)

The relation d2 = 0 and the consistency of the relation (7) with the
differential, d(fθa − θaf) = 0, have nontrivial consequences. The structure
elements are linear in the momenta

Ca
bc = F a

bc − 2pdP
(ad)

bc. (15)

Furthermore, the momenta obey a quadratic relation

2pcpdP
cd

ab − pcF
c
ab −Kab = 0. (16)

The F a
bc and Kab are complex numbers which can be chosen to satisfy

F a
bcP

bc
de = F a

de, KabP
ab

ef = Kef . (17)

From (15) it follows immediately that

eaC
a
bc = 0. (18)

This relation must be also satisfied in the commutative limit and constitutes
a constraint on the frame. A frame has four degrees of freedom in two
dimensions; the constraint subtracts one therefrom.

2. FUZZY DOUGHNUT
Having outlined the main features of the frame formalism, let us discuss

it in a simple 2-dim case. Clearly, every choice of a frame θa implements
a different differential structure. On the other hand, the conditions (15-16)
constrain the possible choices quite rigidely. This can easily be seen in low
dimensions: one can readily ‘solve’ a family of 2-dim metrics with one Killing
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vector. We shall exhibit all possible frames which yield differential calculi
based on inner derivations. As a frame we choose

θ0 = f(x)dt, f > 0, θ1 = dx. (19)

The frame relations can be written as

dxx = x dx, dx t = t dx,

dt x = x dt, dt t = (t + ik̄F )dt,
(20)

and imply dJ01 = 0. We have set

F = J01 d

dx
log f. (21)

The differential structure of the algebra can be written as

(dx)2 = 0, dx dt = −dt dx, (dt)2 = −1
2 ik̄F ′dx dt (22)

or as the relations

(θ1)2 = 0, θ0θ1 = −θ1θ0, (23)

(θ0)2 = 1
2 ik̄fF ′θ0θ1 = 2iεθ0θ1. (24)

We have introduced here a parameter ε define by

ε = k̄µ2, µ2 = 1
4fF ′. (25)

It follows from the frame properties that the mass scale µ is a constant.
Suppose now that the dual momenta exist. The duality relations are

[p0, t] = f−1, [p0, x] = 0,
[p1, t] = 0, [p1, x] = 1.

(26)

These relations allow us to identify p1 with the partial derivative with respect
to x. If φ = φ(x) then

[p1, φ] = [p1, x]∂xφ = ∂xφ. (27)

On the other hand, for φ = φ(t, x) we can write to first order

[p0, φ] = [p0, t]∂tφ = f−1∂tφ. (28)
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If we denote [p0, p1] = L01, the Jacobi identities imply the relations

[p0, J
01] = 0, [p1, J

01] = 0,

[t, L01] = −f ′f−2, [x, L01] = 0.
(29)

One can conclude again that J01 is constant and also that L01 is a function of
x alone. We set J01 = 1. It follows that, neglecting the integration constants,
the ‘Fourier transformation’ between the position and momentum generators
is given by

p0 = − 1
ik̄

∫
f−1, p1 = − 1

ik̄
t. (30)

Each of the pairs (t, x) and (p0, p1) generates the algebra.
The array P ab

cd we write as

P ab
cd = 1

2δ
[a
c δ

b]
d + iεQab

cd. (31)

In dimension two, if we assume that metric depends on x, that is on p0 only,
we find that

P ab
cdpapb =

1
2
[pc, pd] + iεQ00

cdp
2
0 (32)

and therefore L01 is given by

L01 = K01 + p0F
0
01 − 2iεp2

0Q
00

01. (33)

The structure elements are

C0
01 = F 0

01 − 4iεp0Q
00

01. (34)

Symmetry and reality of the product (12) imply that Qab
cd has the following

non-vanishing elements:

Q10
00 = −Q01

00 = 1, Q00
01 = −Q00

10 = 1. (35)

We set also

K01 =
1

ik̄J01
=

1
ik̄

, F 0
01 = −ibµ, (36)

while C0
10 is determined by the constraint

C0
abP

ab
01 = C0

01, C0
01 + C0

10 = −2iεC0
00. (37)
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We have then finally the expressions

L01 = (ik̄)−1(1− bµ−1(iεp0)− 2µ−2(iεp0)2), (38)

C0
01 = −ibµ− 4iεp0, (39)

and a differential equation for p0:

−iε
dp0

dx
= µ2 − iεbµp0 − 2(iεp0)2. (40)

There are three cases to be considered. The simplest is the case with
µ2 →∞. The equation (40) reduces to

−ik̄
dp0

dx
= 1. (41)

One finds the relations

ik̄p0 = −x, f(x) = 1. (42)

This is noncommutative Minkowski space.
An equally degenerate case is the case µ2 → ∞ and εb = cµ. Equa-

tion (40) can be written in the form

−ik̄
dp0

dx
= 1− icp0. (43)

One finds the solution

ip0 = c−1(e−k̄−1cx − 1), f(x) = ek̄−1cx. (44)

This is noncommutative de Sitter space; it can be brought to the usual form
by the change of variables

t′ = 2t, µx′ = 2c−1(e−cx − 1). (45)

The case which interests us the most is that with µ finite. With b = 0
(that is, with F a

bc = 0) the equation (40) becomes

−iε
dp0

dx
= µ2 − 2(iεp0)2. (46)

If we fix β2 = 2µ2 > 0, the equation for p0 becomes

1
β

d

dx

(
−2iεβ−1p0

)
= 1−

(
−2iεβ−1p0

)2
. (47)
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The solution to this equation is given by

ik̄p0 = −β−1 tanh(βx), (48)

with
f(x) = cosh2(βx) (49)

and
F = −2iβ2k̄p0 = 2β tanh(βx). (50)

We find therefore the identity

F ′ + F 2 = f−1f ′′ = 2β2(1 + tanh2(βx)). (51)

The frame corresponding to this solution is given by

θ0 = cosh2(βx)dt =
1
2
(1 + cosh(2βx))dt, θ1 = dx. (52)

Frames of similar type have appeared [7, 8, 9] in 2-dimensional dilaton grav-
ity. The connection and the curvature of the analogous commutative moving
frame are

ω̃0
1 = ω̃1

0 = F θ̃0, (53)

Ω̃0
1 = Ω̃1

0 = −(F ′ + F 2)θ0θ1 = −f−1f ′′θ̃0θ̃1. (54)

The solution is a completely regular manifold of Minkowski signature. In
the limit β → 0

ik̄p0 = −x, f = 1, (55)

one finds Minkowski space. In ‘tortoise’ coordinate x∗, x∗ =
∫ dx

f(x)
, the

frame is given by

θ0 =
1

1− x∗2
dt, θ1 =

1
1− x∗2

dx∗. (56)

From (30) we see that x∗ = −ik̄p0.
Under a Wick rotation

u = 2iβx, v = t, (57)

the frame (19) becomes

θ0 =
1
2
(1 + cosu)dv, θ1 =

1
2iβ

du, (58)
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