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GEOMETRY OF THE FUZZY DOUGHNUT
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Abstract. The noncommutative extension of a dynamical 2-dimen-
sional space-time is given and some of its properties discussed. Wick
rotation to euclidean signature yields a surface which has as commuta-
tive limit the donut but in a singular limit in which the radius of the
hole tends to zero.
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1. INTRODUCTION AND NOTATION

There is a very simple argument due to Pauli that the quantum effects of
a gravitational field will in general lead to an uncertainty in the measurement
of space coordinates. It is based on the observation that two ‘points’ on a
quantized curved manifold can never be considered as having a purely space-
like separation. If indeed they had so in the limit for infinite values of the
Planck mass, then at finite values they would acquire for ‘short time intervals’
a time-like separation because of the fluctuations of the light cone. Since the
‘points’ are in fact a set of four coordinates, that is scalar fields, they would
not then commute as operators. This effect could be considered important
at least at distances of the order of Planck length, and perhaps greater. This
is one motivation to study noncommutative geometry. A second motivation,
which is the one we consider ours, is the fact that it is possible to study
noncommutative differential geometry, and there is no reason to assume
that even classically coordinates commute at all length scales. One can
consider for example coordinates as order parameters as in solid-state physics
and suppose that singularities in the gravitational field become analogs of
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core regions; one must go beyond the classical approximation to describe
them. A straightforward and conservative way is to represent coordinates
by operators. The space-time manifold is thus replaced with an algebra
generated by a set of noncommutative ‘coordinates’. The essential element
which allows us to interpret a noncommutative algebra as a space-time is
the possibility [1, 2] to introduce a differential structure on the former.

We define noncommutative ‘space’ as an associative x-algebra A gener-
ated by a set of hermitean ‘coordinates’ ! which in some limit tend to the
(real) coordinates #' of a manifold; the latter we identify as the classical
limit of the geometry. We suppose that the center of the algebra A is trivial.
The coordinates satisfy a set of commutation relations

(2%, 9] = ikJY (2F). (1)

The parameter k is introduced to describe the fundamental area scale on
which noncommutativity becomes important. It is presumably of order of
the Planck area Gh; the commutative limit is defined by & — 0. The simplest
relation which can be used to define the algebra is

{xi, xj} = ikJY (2)

where J¥ are real numbers; it is called the canonical structure.

In order to define the differential structure on A we use a noncommuta-
tive version of Cartan’s frame formalism [3]. In ordinary geometry a vector
field can be defined as a derivation of the algebra of smooth functions; this
definition can be used also when the algebra is noncommutative. A deriva-
tion, we recall, is a linear map which satisfies the Leibniz rule; sometimes
this is modified to a ‘twisted’ Leibniz rule, [4, 5]). The set of all derivations
we denote by Der(A). The classical notion of the moving frame is general-
ized in the following way. The frame on A is a set of n inner derivations e,
generated by ‘momenta’ p,:

eaf = [p(hf]' (3)

We assume that the momenta also generate the whole algebra A. For inner
derivations, the Leibniz rule is the Jacobi identity. An alternative way to
define the frame is to use the 1-forms 0% dual to e, such that the relation

0(ey) = oy (4)
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holds. The module of 1-forms we denote by Q!(A). To define the left
hand side of the equation (4), that is the basic forms 6%, we first define the
differential, exactly as in the classical case, by the condition

df(ea) = eqf, (5)

and the multiplication of 1-forms by elements of the algebra A by

fdg = feqagb®,  dgf = eqgfo°. (6)

Since every 1-form can be written as sum of such terms, the definition of
differential is complete. In particular, since

f0%(en) = fo5 = (0°F)(es), (7)

we conclude that the frame necessarily commutes with all the elements of
the algebra 4. The 1-form € defined as

0 = —p,0* (8)

can be considered as an analog of the Dirac operator in ordinary geometry.
It implements the action of the exterior derivative on elements of the algebra.
That is

df = =10, f] = [pab”, f] = [pa, f]16°. (9)

In the case of the canonical commutation rule (2) for example, the frame
is % = 6{'dx". From duality we obtain that the momenta are

Pa = %J;x% (10)
The equation (10) gives ‘Fourirer transformation’ between the coordinates
and the momenta in this case. The momenta are singular in the limit & — 0.
The differential is real if (df)* = df*. This is assured if the derivations
eq are real: e, f* = (eqf)*, which is the case if the momenta p, are antiher-
mitean.
Let us mention further properties of the module structure defined by (5-
7). The exterior product is a map from the tensor product of two copies
of the module of 1-forms into the module of 2-forms; we shall identify the
latter as a subset of the former and write the product as

070> = P 10° @ 7. (11)
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The P%,; are complex numbers which satisfy the projector condition and
the hermiticity [6]:

PabchCdef — Pabefa Pabcdpdcef — Pbaef- (12)

The basis 1-forms anticommute for P, = 3 (6264 — 626%). The exterior
derivative of 6% is a 2-form,

1
do* = —2C e 0°6°. (13)
The C'%, are called the structure elements. They can be chosen to satisfy
Cabchcde = Cade- (14)

The relation d?> = 0 and the consistency of the relation (7) with the
differential, d(f0* — 6°f) = 0, have nontrivial consequences. The structure
elements are linear in the momenta

C% = F% — 2pgPDy.. (15)
Furthermore, the momenta obey a quadratic relation
2pepaPab — peFab — Kap = 0. (16)
The F%, and K, are complex numbers which can be chosen to satisfy
F%P"q = F,  KaP%c =K. (17)
From (15) it follows immediately that
eaC%: = 0. (18)

This relation must be also satisfied in the commutative limit and constitutes
a constraint on the frame. A frame has four degrees of freedom in two
dimensions; the constraint subtracts one therefrom.

2. FUZZY DOUGHNUT
Having outlined the main features of the frame formalism, let us discuss
it in a simple 2-dim case. Clearly, every choice of a frame 6% implements
a different differential structure. On the other hand, the conditions (15-16)
constrain the possible choices quite rigidely. This can easily be seen in low
dimensions: one can readily ‘solve’ a family of 2-dim metrics with one Killing
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vector. We shall exhibit all possible frames which yield differential calculi
based on inner derivations. As a frame we choose

0° = f(z)dt, f>0, 0'=da. (19)
The frame relations can be written as

drxr = zdzr, drt=tdz,

: (20)
dtz = zdt, dtt = (t + ikF)dt,
and imply dJ% = 0. We have set
pognd log f (21)
dx )
The differential structure of the algebra can be written as
(dz)*> =0, dxdt= —dtdz, (dt)? = —LikF'dx dt (22)
or as the relations
M) =0, 60°0' =—-06'", (23)
(0°)* = ik fE'0°0" = 2ie0°0". (24)
We have introduced here a parameter € define by
e=ku?, P =LfF (25)

It follows from the frame properties that the mass scale u is a constant.
Suppose now that the dual momenta exist. The duality relations are

[po,t] = f_la [po,l‘] =0,
[p1,t] =0, [p1,z] = 1.

These relations allow us to identify p; with the partial derivative with respect
to z. If ¢ = ¢(x) then

(26)

[pb QS] = [ph x]am¢ = 8m¢ (27)

On the other hand, for ¢ = ¢(¢,x) we can write to first order

[P0, @] = [po, t]0sp = ' Oup. (28)
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If we denote [po,p1] = Lo1, the Jacobi identities imply the relations

[p()? JOI] - 07 [pla JOI] = 07

[t, L()l] = —f/f_Z, [1’, L()l] =0. (29)

One can conclude again that J! is constant and also that Lg; is a function of
x alone. We set J9! = 1. It follows that, neglecting the integration constants,
the ‘Fourier transformation’ between the position and momentum generators
is given by
1 1 1

POZ—%/f ) Plz—%t' (30)

Each of the pairs (¢,z) and (po, p1) generates the algebra.
The array P, we write as

Py = L6l*s% 1 ieQ..,. (31)

In dimension two, if we assume that metric depends on z, that is on pg only,
we find that

1 .
Pabcdpapb = inmpd] + ZEQOOCdpg (32)

and therefore Lg; is given by
Lor = Kot + poF 01 — 2iep5Q™ 01 (33)
The structure elements are
C%1 = FO01 — 4iepoQ™o1. (34)

Symmetry and reality of the product (12) imply that Q.4 has the following
non-vanishing elements:

Q%0 = -Q"p =1, Q"1 = -Q%p = 1. (35)
We set also . .
Ko = —— = — FO; = —ib
01 = 72701 — 77 01 wu, (36)

while C%1 is determined by the constraint

0Py = C%y, C%; + C%p = —2ieC . (37)
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We have then finally the expressions
Loy = (k) (1 = b~ (iepo) — 24" (iepo)?), (38)
C%; = —ibu — diepo, (39)
and a differential equation for pg:

d
e 2 iebupo — 2(iepo)?. (40)
dx
There are three cases to be considered. The simplest is the case with
p? — oo. The equation (40) reduces to
. dpo
—ik— = 1. 41
ik (41)

One finds the relations
ikpo=—z,  f(z)=1 (42)

This is noncommutative Minkowski space.
An equally degenerate case is the case p? — oo and eb = cu. Equa-
tion (40) can be written in the form

d
ik % =1 — icpo. (43)
One finds the solution
; - —k e —leg
Py = C 1(e k - 1), f(z) = eF . (44)

This is noncommutative de Sitter space; it can be brought to the usual form
by the change of variables

t'=2t,  px’ =2 (e —1). (45)

The case which interests us the most is that with g finite. With b = 0
(that is, with F'%,. = 0) the equation (40) becomes

d
e % — 12 — 2(iepo)?. (46)

If we fix % = 2u? > 0, the equation for py becomes
1d

3 (—2@'6571}30) =1- (—Qiﬁﬂflpo)z' (47)
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The solution to this equation is given by

ikpy = —(~ ! tanh(jBx), (48)

with
f(x) = cosh®(B) (49)

and
F = —2i#’kpy = 23 tanh(Bx). (50)

We find therefore the identity
F'+ F? = {717 = 26%(1 + tanh?(3x)). (51)

The frame corresponding to this solution is given by
1
6° = cosh?(fz)dt = 5 (1 + cosh(26z))dt, 0! = du. (52)

Frames of similar type have appeared [7, 8, 9] in 2-dimensional dilaton grav-
ity. The connection and the curvature of the analogous commutative moving
frame are

o =o'y = F°, (53)
001 = Qo = —(F'+ F2)6%" = — 1~ 166" (54)

The solution is a completely regular manifold of Minkowski signature. In
the limit 8 — 0

ikpo = —, f=1 (55)
d
one finds Minkowski space. In ‘tortoise’ coordinate x*, z* = [ TI)’ the
x
frame is given by
1 1
0" = —— dt 0" = —— da*. 56
1—gx*2 77 1 — x*2 v (56)

From (30) we see that x* = —ikpy.
Under a Wick rotation

u = 2i0z, v =1, (57)

the frame (19) becomes

1
6° = 5 (1 + cosu)dv, o' = — du, (58)
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and the corresponding commutative line element has the form
w,) 1 ~\2 3~2 1 -2 3~2
ds :Z(l-i-cosu) dv +Zﬁ du”. (59)
This is the surface of the torus embedded in R3:
- . P | N R S
F = 5(1 +cos@)cosd, Y= 5(1 +cosu)siny, Z= 5{3 sinu, (60)

and for this reason we call this metric the ‘fuzzy doughnut’. It is a singular
axially-symmetric surface of Gaussian curvature

K =2p4%(1 — tan? %a). (61)

The doughnut is defined by the coordinate range 0 < @ < 2w, 0 < o < 2,
with a singularity at the point % = m. In spite of the singularity, the Euler
characteristic is given by

1 r- 1 [- 1
e[A] = Efabfmb = fn% = —ﬂ/dwo_]_ ~0 (62)

as it should be. If we suppose the same domain in the Wick rotated real-t
region, then
0<z<plm, 0<t<om (63)

As 8 — oo the doughnut becomes more and more squashed, and this domain
becomes an elementary domain in the limiting Minkowski space.

3. CONCLUSIONS
Several models have been found which illustrate a close relation be-
tween noncommutative geometry in its ‘frame-formalism’ version and clas-
sical gravity. Heuristically, but incorrectly, one can formulate the relation
by stating that gravity is the field which appears when one quantizes the
coordinates much as the Schrodinger wave function encodes the uncertainty
resulting from the quantization of phase space.
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The first and simplest of these is the fuzzy sphere [10] which is a non-
commutative geometry which can be identified with the 2-dimensional (eu-
clidean) ‘gravity’ of the 2-sphere. The algebra in this case is an n X n matrix
algebra,; if the sphere has radius r then the parameter r/n can be interpreted
as a lattice length. With the identification this model illustrates how gravity
can act as an ultraviolet cutoff, a regularization which is very similar to the
‘point splitting’ technique which has been used when quantizing a field in
classical curved backgrounds. It can also be compared with the screening of
electrons in plasma physics, which gives rise to a Debye length proportional
to the inverse of the electron-number density n. The analogous ‘screening’ of
an electron by virtual electron-positron pairs is responsible for the reduction
of the electron self-energy from a linear to logarithmic dependence on the
classical electron radius. Other models have been found which illustrate the
identification including an infinite series in all dimensions.

In the present paper yet another model is given, one which although
representing a classical manifold of dimension 2 is of interest because the
classical ‘gravity’ which arises has a varying Gaussian curvature. The au-
thors will leave to a subsequent article the delicate task of explaining exactly
which property of the metric makes it ‘quantizable’. This geometry could
furnish a convenient model to study noncommutative effects, for example
in the colliding-D-brane description of the Big-Bang proposed by Turok &
Steinhardt [11]. The 2-space describing the time evolution of the separation
of the branes has been shown to be conveniently described using Rindler
coordinates. One can blur this geometry by using the metric and connection
described here. The flat geometry would have to be replaced by the one
given in this section; in the limit ¢ — 0 it would become flat.

The doughnut example is of importance in that is is the first explicit
construction of an algebra and differential calculus which is singularity-free
in the Minkowski-signature domain and which has a non-constant curvature.
There are two aspects of this problem. To construct a classical manifold from
a differential calculus is relatively simple once one has constructed the frame.
One takes formally the limit and uses the so constructed moving frame to
define the metric. This is contained in the upper right of the following little
diagram
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Fuzzy Classical
Frame — Frame

l | (64

Fuzzy Classical
Geometry — Geometry

More difficult is the construction of a ‘fuzzy geometry’ which would fill in
the lower left of the diagram and would be such that the classical geometry
is a limit thereof. But this step is very important since it gives an extension
of the right-hand side into what could eventually be a domain of quantum
geometry. It is the box in the to-be-constructed lower left corner where pos-
sibly one can find an interesting extension of the metric containing correction
terms which describe the noncommutative structure.

We have not succeeded however to completely extend this geometry to
all orders in the noncommutativity parameter ie. This will be considered
in a subsequent article. There is evidence that the extension will involve
a non-vanishing value of the torsion 2-form. The metric is extended into
the noncommutative domain so as to maintain such formal properties as
reality and symmetry. The interpretation however as a length requires more
attention when the ‘coordinates’ do not commute.

Last, but not least, our example illustrates even better than the fuzzy
sphere the way in which quantum mechanics is modified by geometry and
the important role which noncommutative geometry plays in understanding
the relation between the two. The ‘momenta’ which we introduce are the
natural curved-space generalization of the canonical momentum operators
of ordinary quantum mechanics. In the present formalism they generate the
algebra as well as do the coordinates. Once the algebra is given the noncom-
mutative structure of space-time is manifest in the commutation relations
[¢,27] and the appropriate curved-space version of quantum mechanics is
defined by the relations (3). The two structures are intimately enmeshed
by the Fourier transform as well as Jacobi identities. If the right-hand side
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of (3) reduces to the Kronecker symbol when f = 2% then the space is flat;
because of the Jacobi identities only in this case can quantum mechanics be
consistent with a commutative space-time structure.
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