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EULER SUMMATION FORMULA FOR PATH INTEGRALS

A. Bogojević, A. Balaž, A. Belić

Scientific Computing Laboratory, Institute of Physics, Belgrade

Abstract. We present and comment on some details of a new ana-
lytical method for systematic improvement of the convergence of path
integrals of a generic N -fold discretized theory. The new methods rep-
resents a Euler summation formula for path integrals. Keeping the first
p terms in this formula improves convergence of path integrals to the
continuum limit to 1/Np. We have given explicit calculations up to
p = 9. We have also checked this derived speedup in convergence by
performing Monte Carlo simulations on several different models.
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1. INTRODUCTION

Feynman’s path integrals have, since their inception [3, 4], represented
an extremely compact and rich formalism for dealing with quantum theo-
ries. They have been powerful tools for dealing with symmetries (including
gauge symmetry), for deriving non-perturbative results (such as solitons,
instantons, symmetry breaking), for showing connections between different
theories or different sectors of theories (e.g. bosonization, duality) [5, 6].
Their flexibility and intuitive appeal have allowed us to generalize quantiza-
tion to ever more complicated systems. As a result, path integrals have led
to a rich cross fertilization of ideas between high energy and condensed mat-
ter physics [7, 8]. Today, they are used both analytically and numerically
[9, 10, 11, 12, 13] in many other areas of physics, chemistry and materials
science. They are starting to play more prominent roles in several areas
of mathematics and in modern finance [14]. An extensive review of path
integrals and their applications can be found in [15].

This was the good news. The bad news is that we still have very lit-
tle knowledge of the precise mathematical properties of path integrals. In
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addition, a very small number of path integrals can be solved exactly. Al-
though the functional formalism has been used to derive many general ap-
proximation techniques (perturbation, semi-classical expansion, variational
methods) along with a host of model-specific approximations, there still re-
main many interesting models that can’t be analyzed analytically and need
to be treated numerically. The definition of path integrals as a limit of mul-
tiple integrals makes their numerical evaluation quite natural. The most
all-around applicable numerical method for such calculations is based on
Monte Carlo simulations. However, numerical integration of path integrals
is notoriously demanding of computing time. In fact specific path integral
calculations serve as benchmarks for new generations of supercomputers.

Several research groups have in the past focused on improving the con-
vergence of path integrals. The best available result for a generic theory
(valid only for partition functions and not for general amplitudes) is the
convergence of N -fold discretized expressions as 1/N4 [16, 17, 18]. Related
investigations have focused either on improvements in short time propaga-
tion [19, 20, 21] or have presented model specific improvements of the action
[22, 23]. Ref. [24] gives a useful comparison of several different approaches.

In order to further significantly speed up numerical procedures for calcu-
lating path integrals for a generic theory it is necessary to add new analytical
input. We present and comment on the systematic investigation of the re-
lation between different discretizations of a given theory derived in [1, 2]. A
result of this investigation is a procedure for constructing a series of effective
actions S(p) having the same continuum limit as the starting action S, but
which approach that limit as 1/Np. Using this procedure we have obtained
explicit expressions for these effective actions for p ≤ 9. In the current paper
we cast the new analytical input in the form of a Euler summation formula
for path integrals. The fact that it is possible to derive such a formula for
path integrals of a generic theory hints at the possible existence of (currently
unseen) simplifications that might make it possible to set up a rigorous the-
ory of path integration – a modern day parallel to Riemmann’s integration
theory.

2. ORDINARY INTEGRALS

The current status of the development of the path integral formalism is
quite similar to that of ordinary integrals before the setting up of integration
theory by Riemmann. In those days integrals were calculated directly from
the defining formula, i.e. one looked at a specific discretization of the integral
(Darboux sum), attempted to do the sum explicitly, and finally tried to
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calculate the continuum limit. For example,

I[f ] ≡
∫ T

0
f(t)dt = lim

N→∞
IN [f ] , (1)

where

IN [f ] =
N∑

n=1

f(tn)εN , (2)

εN = T/N and tn = nεN . It goes without saying that done this way, even the
simplest ordinary integrals presented a challenge. The mathematicians of the
18th century did not have computers at their disposal or the development
of integration theory might have come much later, i.e. they might have
succumbed to doing brute force numerical calculations of integrals of all
but the simplest functions. The problem with these hypothetical numerical
calculations would have been two fold: they would have been inefficient (the
discretized sums converge slowly to the continuum value), and they would
have worked (thus quite probably slowing down the further development of
integration theory). Luckily, this early numerical road was not open. The
last great step in the development of integration before Riemmann was made
by Euler. Let us look at a simple derivation of Euler’s summation formula
that we will generalize to path integrals in the following sections.

Discretization is not unique. This makes it possible to change f(t) to
some other function (adding terms proportional to εN , ε2N , etc.) without
changing the integral. Let us assume that f∗(t) is such an equivalent function
with the added property that the sums IN [f∗] do not depend on N . In fact
we shall present a way of explicitly constructing f∗(t) for any given f(t).
We first look at the simple case of f(t) = 1. Now

IN [1] =
N∑

n=1

εN = T , (3)

which is already N -independent. Hence, in this case, all the additional terms
vanish. Note that f∗(t) is completely determined by the original function
f(t) (and by εN ), so that the additional terms necessarily depend only on
the derivatives f ′, f ′′, etc.

The second step is to take f(t) = t. In this case we get

IN [t] =
N∑

n=1

tnεN =
N(N + 1)

2
T 2

N2
=

T 2

2
+

T 2

2N
. (4)
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From this it follows that IN [t − εN
2 ] = T 2

2 . Therefore, up to f ′′ and higher
derivatives of f that all vanish for linear f(t), we have f∗(t) = f(t)− εN

2 f ′(t).
We continue this procedure by looking at f(t) = t2. In this case we find

IN [t2] =
N∑

n=1

t2nεN =
N(N + 1)(2N + 1)

6
T 3

N3
=

T 3

3
+

T 3

2N
+

T 3

6N2
. (5)

It follows that IN [t2 − εN tn − 2
3ε2N ] = T 3

3 . In terms of f∗ this gives f∗(t) =

f(t)− εN
2 f ′(t)− 2ε2N

3 f ′′(t)+ . . .. The additional terms now depend on higher
powers of εN as well as on higher derivatives and are determined by con-
sidering IN [t3], and so on. In this way we have constructed a procedure for
finding f∗(t) for any given f(t). Remembering that IN [f∗] does not depend
on N we find
∫ T

0
f(t)dt =

N∑

n=1

f(tn)εN − εN

2

N∑

n=1

f ′(tn)εN − 2ε2N
3

N∑

n=1

f ′′(tn)εN + . . . . (6)

This is the well-known Euler summation formula. We may also write it more
compactly as

I[f ] = IN [f (p)] + O(εp
N ) , (7)

where f (p) is the truncation of f∗ to the first p terms. The Euler formula
gives the analytical relation between integrals and their discretized sums.
Looked at numerically, this formula allows us to increase the speed of con-
vergence of discretized expressions to the continuum limit. For example, in
the defining relation the discretized expressions differ from the continuum
by a term of order O(1/N). By using the Euler sum formula with p terms
we can reduce that error to O(1/Np). All that is needed to do this is that
the integrand is differentiable p − 1 times. the following sections we will
generalize the above approach to path integrals.

3. GENERAL PROPERTIES OF PATH INTEGRALS
In functional formalism the quantum mechanical amplitude A(a, b;T ) =

〈b|e−TĤ |a〉 is given in terms of a path integral which is simply the N →∞
limit of the (N − 1)– fold integral expression

AN (a, b; T ) =
(

1
2πεN

)N
2

∫
dq1 · · · dqN−1 e−SN . (8)

The Euclidean time interval [0, T ] has been subdivided into N equal time
steps of length εN = T/N , with q0 = a and qN = b. SN is the naively
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discretized action of the theory. We focus on actions of the form

S =
∫ T

0
dt

(
1
2

q̇2 + V (q)
)

, (9)

whose naive discretization is simply

SN =
N−1∑

n=0

(
δ2
n

2εN
+ εNVn

)
, (10)

where δn = qn+1 − qn, Vn = V (q̄n), and q̄n = 1
2(qn+1 + qn). We use units in

which ~ and particle mass equal 1.
As was the case with ordinary integrals the definition of the path in-

tegrals also makes it necessary to make the transition from the continuum
to the discretized theory, a process that is far from unique. For theories
described by eq. (9) we have the freedom to choose any point in [qn, qn+1] in
which to evaluate the potential without changing physics – the discretized
amplitudes do differ, but they tend to the same continuum limit. The cal-
culations we present turn out to be simplest in the mid-point prescription
where the potential V is evaluated at q̄n. A more important freedom related
to our choice of discretized action has to do with the possibility of introduc-
ing additional terms that explicitly vanish in the continuum limit. Actions
with such additional terms will be called effective. For example, the term∑N−1

n=0 εN δ2
n g(q̄n), where g is regular when εN → 0, does not change the

continuum physics since it goes over into ε2N
∫ T
0 dt q̇2 g(q), i.e. it vanishes as

ε2N . Such terms do not change the physics, but they do affect the speed of
convergence. A systematic study of the relation between different discretiza-
tions of the same path integral will allow us to explicitly construct a series
of effective actions with progressively faster convergence to the continuum.
Before we do this we will parallel the derivation in the previous section and
derive some general properties of the best effective action.

The amplitude A(a, b;T ) of some theory with action S satisfies

A(a, b;T ) =
∫

dq1 · · · dqn−1A(b, qn−1; εN ) · · ·A(q1, a; εN ) , (11)

for all N . This general relation is a direct consequence of the linearity
of states in a quantum theory. In analogy with ordinary integrals let us
now suppose that there exists an effective action S∗ that is equivalent to S
(i.e that leads to the same continuum limit for all path integrals) with the
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additional property that its N -fold discretized amplitude A∗N (a, b; T ) does
not depend on N , i.e. that satisfies

A∗N (a, b; T ) = A(a, b; T ) . (12)

As was the case in the previous section we will in fact construct a general
procedure for evaluating this effective action. For actions of the form given
in eq. (9) we may write the amplitude as

A(qn+1, qn; εN ) =
(

1
2πεN

) 1
2

exp
(
− δ2

n

2εN

)
A(qn+1, qn; εN ) , (13)

where the reduced amplitude A → 1 as εN → 0. Writing S∗N as

S∗N =
N−1∑
n=o

(
δ2
n

2εN
+ εNW ∗

n

)
, (14)

and using eq. (8), (11) and (12) we find

exp (−εNW ∗
n) = A(qn+1, qn; εN ) ... (15)

Note that W ∗
n is reminiscent of some effective potential, so it should depend

on q̄n, however, from the above relation we see that it must also depend on
δn. In addition, W ∗ also has an explicit dependence on the discrete time
step εN , hence

W ∗
n = W ∗(δn, q̄n; εN ) . (16)

As we have seen, the above functional form is a direct consequence of the
linearity of quantum theory. The equivalence of S and S∗ implies that
W ∗ → V (q̄) when εN and δ go to zero. The final general property of
W ∗ follows from the reality of amplitudes in the Euclidean formalism. Us-
ing the hermiticity of the Hamiltonian we find A(a, b;T ) = A(a, b;T )† =
〈b|e−TĤ |a〉† = 〈a|e−TĤ |b〉 = A(b, a;T ). In terms of W ∗ this gives us

W ∗(δn, q̄n; εN ) = W ∗(−δn, q̄n; εN ) , (17)

or, said another way, only even powers of δn are present in the expansion of
W ∗:

W ∗(δn, q̄n; εN ) = g0(q̄n; εN ) + δ2
n g1(q̄n; εN ) + δ4

n g2(q̄n; εN ) + . . . . (18)

All the functions gk are regular in the ε → 0 limit. The link to the starting
theory is now simply g0(q̄n; εN ) → V (q̄n) as εN goes to zero. This concludes
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the general properties of W ∗. The remaining properties will be analyzed in
the following section by studying the relation of discretizations of different
coarseness.

4. RELATION BETWEEN DIFFERENT DISCRETIZATIONS
We start by studying the relation between the 2N -fold and N -fold dis-

cretizations of the same theory. From eq. (8) we see that we can write the
2N -fold amplitude as an N -fold amplitude given in terms of a new action
S̃N determined by

e−S̃N =
(

2
πεN

)N
2

∫
dx1 · · · dxN e−S2N , (19)

where S2N is the 2N -fold discretization of the starting action. We have
written the 2N -fold discretized coordinates Q0, Q1, . . . , Q2N in terms of q’s
and x’s in the following way: Q2k = qk and Q2k−1 = xk. Note that we have
q0 = a, qN = b, while the N −1 remaining q’s play the role of the dynamical
coordinates in the N -fold discretized theory. The x’s are the N remaining
intermediate points that we integrate over in eq. (19). It is not difficult to
see that if we use the naively discretized action SN one obtains for S̃N an
expression that is not of the same form as SN .

Having in mind the results of the previous section it is best to use the
effective action

S∗N =
N−1∑
n=o

(
δ2
n

2εN
+ εNW ∗(δn, q̄n; εN )

)
, (20)

which gives the same result for both the 2N -fold and N -fold discretizations.
Therefore, in this case we get

e−S∗N =
(

2
πεN

)N
2

∫
dx1 · · · dxN e−S∗2N . (21)

From this one easily finds

exp [−εNW ∗(δn, q̄n; εN )] =

=
(

2
πεN

) 1
2
∫ +∞

−∞
dy exp

(
− 2

εN
y2

)
F

(
q̄n + y;

εN

2

)
, (22)

where

− 2
εN

ln F (x; εN ) = g0

(qn+1 + x

2
; εN

)
+ g0

(x + qn

2
; εN

)
+

+(qn+1 − x)2 g1

(qn+1 + x

2
; εN

)
+ (x− qn)2 g1

(x + qn

2
; εN

)
+ . . .(23)
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The above integral equation can be solved for the simple cases of a free
particle and a harmonic oscillator, and gives the well known results. Note
however that for a general case the integral in eq. (22) is in a form that is
ideal for an asymptotic expansion [25]. The time step εN is playing the role
of small parameter (in complete parallel to the role ~ plays in standard semi-
classical, or loop, expansion). As is usual, the above asymptotic expansion
is carried through by first Taylor expanding F

(
q̄n + y; εN

2

)
around q̄n and

then by doing the remaining Gaussian integrals. Assuming that εN < 1 (i.e.
N > T ) we have

g0(q̄n; εN ) + δ2
n g1(q̄n; εN ) + δ4

n g2(q̄n; εN ) + . . . =

= − 1
εN

ln

[ ∞∑

m=0

F (2m)
(
q̄n; εN

2

)

(2m)!!

(εN

4

)m
]

. (24)

Note that F (2m)(x; εN ) denotes the corresponding derivative with respect to
x. All that remains is to calculate these expressions using eq. (23) and to ex-
pand all the gk’s around the mid-point q̄n. This is a straight forward though
tedious calculation. In this paper we will illustrate the general procedure
for calculating S∗ by explicitly giving its expansion to order ε3N :

g0(q̄n ; εN ) = g0

(
q̄n;

εN

2

)
+ εN

[
1
4
g1

(
q̄n;

εN

2

)
+

1
32

g′′0
(
q̄n;

εN

2

)]
+

+ε2N

[
3
16

g2

(
q̄n;

εN

2

)
− 1

32
g′0

2
(
q̄n;

εN

2

)
+

+
1

2048
g
(4)
0

(
q̄n;

εN

2

)
+

3
128

g′′1
(
q̄n;

εN

2

)]

g1(q̄n ; εN ) =
1
4
g1

(
q̄n;

εN

2

)
+

1
32

g′′0
(
q̄n;

εN

2

)
+ (25)

+εN

[
3
8
g2

(
q̄n;

εN

2

)
+

1
1024

g
(4)
0

(
q̄n;

εN

2

)
− 1

64
g′′1

(
q̄n;

εN

2

)]

g2(q̄n ; εN ) =
1
16

g2

(
q̄n;

εN

2

)
+

1
6144

g
(4)
0

(
q̄n;

εN

2

)
+

1
128

g′′1
(
q̄n;

εN

2

)
.

In the above relations we expanded g0 up to ε2N , g1 up to εN , etc. We
also disregarded all the higher gk’s. The reason for this is that the short
time propagation of any theory satisfies δ2

n ∝ εN while the gk term enters
the action multiplied by δ2k

n . In general, if we wish to expand the effective
action to εp

N we need to evaluate only g0 (up to εp−1
N ) and the remaining p−1

functions gk (up to εp−1−k
N ). The task of calculating the effective action to
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large powers of εN is time-consuming and is best done with the help of a
standard package for algebraic calculations such as Mathematica. Using
Mathematica we determined the corresponding expressions for p ≤ 9.

Although the above system of recursive relations is non-linear, it is in
fact quite easy to solve if we remember that the system itself was derived
via an expansion in εN . Having this in mind we first write all the functions
as expansions in powers of εN that are appropriate to the level p we are
working at. For p = 3, we have

g0(q̄n; εN ) = V (q̄n) + εNR1(q̄n) + ε2NR2(q̄n)
g1(q̄n; εN ) = R3(q̄n) + εNR4(q̄n) (26)
g2(q̄n; εN ) = R5(q̄n) .

Putting this into the Eq. (25) we determine the functions R1 to R5 in terms
of V . The p = 3 level solution equals

g0 = V + εN
V ′′

12
+ ε2N

[
−V ′ 2

24
+

V (4)

240

]

g1 =
V ′′

24
+ εN

V (4)

480
(27)

g2 =
V (4)

1920
.

Note that W ∗ depends only on the initial potential V and its derivatives
(as well as on εN ). One can similarly calculate the effective action S∗ to
any desired level p. We denote the p level truncation of the effective action
as S(p). S(p) has the property that its N -fold amplitudes deviate from the
continuum expressions as O(εp

N )

A(a, b;T ) = A
(p)
N (a, b; T ) + O(εp

N ) . (28)

Comparing this to eq. (7) we see that we have just derived the generaliza-
tion of the Euler summation formula to path integrals. Just as with the
ordinary Euler formula it gives the relation between path integrals and their
discretizations to any given precision.

It is important to note that one solves for the effective action at level p
but once for all theories, i.e. the solution that is found holds for all initial
potentials. The only requirement for the level p solution is that the starting
potential is differentiable 2p− 2 times. Solutions for larger values of p are a
bit more cumbersome, however, they are just as easy to use in simulations.
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We have found that the growth in complexity of the effective actions with
increasing p has little effect on computation time for p ≤ 4, while simulations
with p = 9 are roughly ten times slower due to this. However, this is an
extremely small price to pay for a gain of eight orders of magnitude in the
speed of convergence. Expressions for effective actions up to p = 9 can be
found on our web site [26].
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 0.0001
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 1  10

p=1
p=2
p=4
p=6

Figure 1: Deviations from the continuum limit |A(p)
N − A| as

functions of N for p = 1, 2, 4 and 6 for an anharmonic oscillator
with quartic coupling λ = 10, time of propagation T = 1 from
a = 0 to b = 1. NMC was 9.2 ·109 for p = 1, 2, 9.2 ·1010 for p = 4,
and 3.68 ·1011 for p = 6. Dashed lines correspond to appropriate
1/N polynomial fits to the data. Solid lines give the leading 1/N
behavior. The level p curve has a 1/Np leading behavior.

The analytical derivations presented work equally well in both the Eu-
clidean and Minkowski formalism (with appropriate iε regularization), i.e.
they are directly applicable to quantum systems as well as to statistical
ones. However, the Monte Carlo simulations used to numerically document
our analytical results necessarily needed to be done in the Euclidean for-
malism. We analyzed in detail several models: the anharmonic oscillator
with quartic coupling V = 1

2 q2 + λ
4! q4 and a particle moving in a modi-

fied Pöschl-Teller potential over a wide range of parameters. In all cases
we found agreement with eq. (28). Fig. 1 illustrates this behavior in the
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case of an anharmonic oscillator. We see that the p level data indeed differs
from the continuum amplitudes as a polynomial starting with 1/Np. The
deviations from the continuum limit |A(p)

N − A| become exceedingly small
for larger values of p making it necessary to use ever larger values of NMC

so that the MC statistical error does not mask these extremely small devia-
tions. For p = 6 we see that although we used an extremely large number of
MC samples (NMC = 3.68 · 1011) the statistical errors become of the same
order as the deviations already at N & 8. For p = 9 this is the case even for
N = 2, i.e. we already get the continuum limit within a MC error of around
10−8.

To conclude, we have presented an algorithm that leads to significant
speedup of numerical procedures for calculating path integrals. The in-
crease in speed results from new analytical input that comes from a system-
atic investigation of the relation between discretizations of different coarse-
ness and that leads to a generalization of the Euler summation formula
to path integrals. We have presented an explicit procedure for obtain-
ing a set of effective actions S(p) that have the same continuum limit as
the starting action S, but which approach that limit ever faster. Ampli-
tudes calculated using the N -point discretized effective action S

(p)
N satisfy

A
(p)
N (a, b; T ) = A(a, b; T ) + O(1/Np). We have obtained and analyzed the

effective actions for p ≤ 9 and have documented the speedup up to 1/N9 by
conducting Monte Carlo simulations of several different models. Several in-
teresting properties of this procedure follow from the fact that the solutions
were obtained using an asymptotic expansion. These additional properties
will be presented and discussed in a future publication. Extension to d > 1
is also in progress. The derivation of higher dimensional analogues of in-
tegral equation (22) does not seem to present a problem. The asymptotic
expansion used to solve it is also directly generalizable. However, the alge-
braic recursive relations that determine S(p) will be more complex and may
practically limit us to smaller values of p.
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[3] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Inte-
grals, McGraw-Hill, New York, 1965.

[4] R. P. Feynman, Statistical Mechanics, W. A. Benjamin, New York,
1972.

[5] C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill,
New York, 1980.

[6] S. Coleman, Aspects of Symmetry, Cambridge University Press, 1985.

[7] C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Cambridge Uni-
versity Press, 1991.

[8] G. Parisi, Statistical Field Theory, Addison Wesley, New York, 1988.

[9] J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).

[10] J. A. Barker, J. Chem. Phys. 70, 2914 (1979).

[11] M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, Vol. 1: Basics,
John Wiley and Sons, New York, 1986.

[12] E. L. Pollock and D. M. Ceperley, Phys. Rev. B 30, 2555 (1984).

[13] D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).

[14] B. Baaquie, Quantum Finance, Cambridge University Press, Cam-
bridge, 2004.

[15] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer
Physics, and Financial Markets, World Scientific, Singapore, 2004.

231



232 REFERENCES

[16] M. Takahashi and M. Imada, J. Phys. Soc. Jpn. 53, 3765 (1984).

[17] X. P. Li and J. Q. Broughton, J. Chem. Phys. 86, 5094 (1987).

[18] S. Jang, S. Jang, and G. Voth, J. Chem. Phys. 115, 7832 (2001).

[19] N. Makri and W. H. Miller, Chem. Phys. Lett. 151, 1 (1988).

[20] N. Makri and W. H. Miller, J. Chem. Phys. 90, 904 (1989).

[21] N. Makri, Chem. Phys. Lett. 193, 435 (1992).

[22] M. Alford, T. R. Klassen, and G. P. Lepage, Phys. Rev. D 58, 034503
(1998).

[23] S. D. Bond, B. B. Laird, and B. J. Leimkuhler, J. Comp. Phys. 185,
472 (2003).
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