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Abstract. In order to lift the continuous moduli space of string vacua,
non-trivial fluxes may be the essential input. In this talk I summa-
rize aspects of two approaches to compactifications in the presence of
fluxes: (i) generalized Scherk-Schwarz reductions and gauged super-
gravity and (ii) the description of flux-deformed geometries in terms
of G-structures and intrinsic torsion. Especially the type IIB case is
considered.
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1. Introduction

A major problem in most string compactifications is the emergence of a
moduli space of string vacua. Moduli appear in two guises: (i) the closed
string moduli, which are related to deformations of internal cycles and (ii)
open string moduli, that parameterize the positions of branes wrapped in the
internal space. The standard model of particle physics as well as inflationary
cosmology are not compatible with free moduli which is moduli problem. If
supersymmetry is broken only at fairly low energies, we need a mechanism
that fixes all moduli while still preserving some supersymmetries and so far,
only fluxes seem to be able to lift both types of moduli in a supersymmetric
way. Fluxes are nothing but RR- and/or NS-forms, which do not vanish in
the vacuum and they exert forces on cycles. A non-vanishing flux presents an
energy density and hence corresponding cycle tend to expand. The opposite
happes with a perpendicular flux, ie. it yields a shrinking cycle. These
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two competing effects yield the stabilization and it is not the quantization
condition for fluxes that yield the lifting. The open string moduli are fixed
by fluxes due to their coupling to the world volume of the branes provides a
potential and since the open string moduli are compact (for compact internal
space), the potential will have extrema. In addition to these form-field fluxes
exist also metric fluxes, as eg. given by twisted tori.

All fluxes are related to Cherk-Schwarz reductions which are especially
interesting because they yield a consistent truncation on the massless KK
spectrum. In addition, they are related to gauged supergravity and the
potential can be calculated explicitly, which is helpful for many purposes. On
the other hand gauged supergravity does not yield the deformed (internal)
geometry and thus the lifting to 10 dimensions is in most cases not clear.
To get the deformed internal geometry, one has instead to solve directly
the 10-dimensional equations, which uncovers not only the embedding of
the internal fluxes but also classifies the solution with respect to the torsion
classes (or the G-structures as defined by a set of differential forms).

We have organized this paper as follows. In Section 2 we explain the
relation between Scherk-Schwarz reductions and gauged supergravity and
Section 3 is devoted to the second approach, ie. we solve the 10-dimensional
(type IIB) Killing spinor equations and relate fluxes to torsion components
and G-structures. For more details we refer to an extended talk on this
subject [1].

2. Fluxes, Scherk-Schwarz reduction and gauged supergravity

One may argue that in the vacuum all fields should be trivial and the
metric is (Ricci-) flat. This strong restriction is not justified, and non-
zero values of RR- and NS-fields can still be considered as a viable vacuum
configuration – at least as long as they respect the 4-dimensional Poincaré
symmetry. If so, we are dealing with compactifications in presence of fluxes
and one can distinguish between gauge field and metric (or geometric) fluxes,
that are related by supersymmetry. These fluxes generate a non-zero energy-
momentum tensor and hence the internal metric is in general not Ricci-flat;
the resulting geometries can be quite complicated (as we will see later).

To make this more explicit let us note, that in the simplest case gauge
field fluxes can be generated by a linear dependence (on the internal co-
ordinates) of the KK scalars coming from gauge fields. The gauge sym-
metry implies that these scalars appear only via derivatives in the La-
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grangian/equations of motion and hence, a linear dependence on the internal
coordinates leaves the Lagrangian still independent of the internal coordi-
nates and one can integrate over them. This is known as the (generalized)
Scherk-Schwarz reductions, which can be applied to any global symmetry
and especially to those KK scalars, that parameterize an isometry of the
moduli space. In general, this procedure does not commute all supersymme-
try transformations and hence supersymmetry is at least partially broken.
In the original Scherk-Schwarz reduction this was done with respect to a
fermionic phase transformation, which did not commute with the supersym-
metry transformation and hence supersymmetry was broken completely [2].
In the case at hand, we apply it to isometries of the moduli spaces and some
supersymmetries remain unbroken, or in other words, some supersymmetry
transformations commute with the (generalized) Scherk-Schwarz reduction.
More details on these reductions are given in the literature, see [3] – [7].

From the lower dimensional point of view Scherk-Schwarz reductions
correspond to a gauging of the corresponding global symmetry and following
[8] let us discuss a simple example. If we just keep the axion-dilaton coupling,
the type IIB supergravity action reads

S ∼
∫ √

g
[
R − gMN∂Mτ∂N τ̄

|τ − τ̄ |2
]

(1)

which exhibits, as part of the SL(2,R) symmetry, the axionic shift symmetry
τ → τ + c for any c = const. In the Scherk-Schwarz reduction over one
coordinate (say y) one assumes c = my and hence one writes

τ(x, y) = τ(x) + my . (2)

For the metric, one makes the usual KK-Ansatz

ds2 = e2σ(dy + Aµdxµ)2 + gµνdxµdxν

where ∂y is a Killing vector. Thus, the kinetic term yields

gMN∂Mτ∂N τ̄

|τ − τ̄ |2 =
gµνDµτ(x)Dν τ̄(x)
|τ(x)− τ̄(x)|2 +

m2

|τ(x)− τ̄(x)|2 e−2σ

where the second term is a (run-away) potential and the covariant derivative
in the kinetic term is Dµτ = ∂µτ(x)−mAµ. Therefore, the scalar field Re(τ)
is now charged with respect to the local shift transformation

τ → τ + c(x) , A → A +
1
m

dc
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and in the original metric the gauge transformation in A can be absorbed by
a coordinate transformation y → y+c(x). Obviously, the same result can be
obtained by a gauging of the global shift symmetry in the reduced theory.
The charged scalar, Re(τ), does not enter the potential and represents a flat
direction, which is required by gauge invariance and which in turn can be
used to gauge away the scalar giving a mass to the gauge boson (the kinetic
term for Re(τ) becomes a mass term for Aµ).

This Scherk-Schwarz reduction was related to the isometry ∂y and was
generated an internal flux given by the 1-form: dyτ = mdy and as result
the scalar field Re(τ) became charged under the corresponding KK vector
field. A general Calabi-Yau space has no isometries and the internal metric
does not give rise to 4-dimensional vector fields, but nevertheless there is an
analogous mechanism which relates flux compactification to gauged super-
gravity. To be concrete we follow now [9], consider the type IIB case with
fluxes for the NS-2-form B and write

B + iJ = ua(x, y)ωa = [ua(x) + ca(y)]ωa .

The coefficients ca(y) are fixed by the requirement that the corresponding
field strength yields a real internal 3-form (= flux), which can be expanded
in the basis {χk, χk} with the constant coefficients mk, ie. dca(y) ∧ ωa =
mkχk = Hflux giving

d(B + iJ) = dua(x) ∧ ωa + (mk χk + cc) .

To keep the notation simple, we drop all indices (mk → m) and collecting
the terms containing this mass deformation yields for the 5-form

F5 = dC4 − 1
4
C2 ∧H = [dA− 1

4
mC

(ext)
2 ] ∧ χ + cc + · · ·

where Cext
2 is the external component of the 2-form [note, a Calabi-Yau has

no non-trivial 5-forms and therefore ω ∧ χ = 0]. Now, the kinetic term for
this 5-form yields exactly a massive 2-form coupling in 4 dimensions

[
(dA)µν − 1

8
mC(ext)

µν

]2

and this expression has to be dressed up with the metric of the complex
structure moduli space (we suppressed the indices). This massive 2-form
can be dualized to a massive vector, where the charged scalar is given by the
dual of C

(ext)
2 .
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The realization of flux compactifications within gauged supergravity opens
the possibility to understand the moduli stabilization within gauged super-
gravity and we shall summarize in the following some essentials. The starting
point is the Lagrangian of ungauged supergravity with N=2 supersymmetry
in 4 dimensions, which is obtained from standard Kaluza-Klein reduction
giving rise to a continuous moduli space: M = MV × MH , where MV

and MH are parameterized by the scalars belonging to the vector multiplets
and to the hyper multiplets, respectively. Potentials that are consistent
with N = 2 supersymmetry are obtained by performing a gauging of various
global symmetries. There are two different types of gaugings, namely (i) one
can either gauge some of isometries of the moduli space of ungauged N = 2
supergravity or (ii) one can gauge (part of) the SU(2) R-symmetry, which
only acts on the fermions. We are interested in a gauging that generate a
potential for both types of scalars and we discuss gaugings of isometries of
MH .

Scalar fields in hyper multiplets parameterize a quaternionic Kahler man-
ifold MH and these spaces possess three complex structures Jx as well as a
triplet of Kahler two-forms Kx (x = 1, 2, 3 denotes the SU(2) index). The
holonomy group of these spaces is SU(2)×Sp(nH) and the Kahler forms are
covariantly constant with respect to the SU(2) connection. The isometries
of MH are generated by a set of Killing vectors kI = ku

I ∂u

qu → qu + ku
I εI (3)

where “I” counts the different isometries and qu are the scalar fields of hyper
multiplets. The gauging of (some of) the Abelian isometries gives gauge
covariant derivatives dqu → dqu + ku

I AI so that the vector field become
massive. In order to maintain supersymmetry, the gauging has to preserve
the quaternionic structure, which implies that the Killing vectors have to
be tri-holomorphic, which is the case whenever it is possible to express the
Killing vectors in terms of a triplet of real Killing prepotentials Px

I as follows:

Kx
uvk

v
I = −∇uPx

I ≡ −∂uPx
I − εxyzωy

uPz
I (4)

where ωy
u is the SU(2) connection giving the Kahler forms by Kx

uv = −∇[uωx
v].

By using the Pauli matrices σx one can also use a matrix notation: PI =∑3
x=1 Px

I σx. With these Killing prepotentials one can define an SU(2)-
valued superpotential by [10, 11]

W x = XIPx
I ≡ XI(z)Px

I (q) , (5)
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where {z, q} denote collectively the scalars from vector and hyper multiplets.
A real valued superpotential can be defined as W 2 = eK det(W xσx), where
K is the Kahler potential of the special Kahler manifold MV . Supersym-
metric vacua are extrema of the real superpotential, which are equivalent
to a covariantly constant superpotential W x. This gives as constraints for
supersymmetric vacua

(i) (∇AXI)Px
I = 0 , (ii) XI(∇uPx

I ) = Kx
uv(X

Ikv
I ) = 0 (6)

where {∇A,∇u} denote the Kahler/SU(2)-covariant derivatives with respect
to the scalars {zA, qu} in vector/hyper multiplets and XI = XI(z) is part
of the symplectic section (XI , FI) [FI is the derivative of the prepotential
F (X) with respect to XI ].

In order to fix the moduli from the vector as well as hyper multiplet it
was important that we gauged an isometry of the quaternionic space MH or
equivalently to add fluxes (3-form flux on the IIB e.g.) which make a scalar
of a hyper multiplet massive. This is only the minimal requirement, on top
of this gauging one may also consider to gauge isometries of vector multi-
plet moduli space MV . The resulting superpotential obtained from gauged
quaternionic isometries was given in (5) with XI = XI(z) as the “electric”
part of the symplectic section V = (XI , FI). It is a known problem, that
gauged supergravity prefers the electric part and does not produces the mag-
netic part of the superpotential. But by taking into account also (massive)
tensor multiplets, one can promote it to a manifestly symplectic expression
[12]. An important property of this setup is however, that by a symplectic
transformation one call always go into a strictly perturbative regime where
all magnetic charges vanish so that the potential in (5) can always be con-
sidered. This property that the electric and magnetic charges are mutually
local is a consequence of supersymmetric Ward identities.

We can now discuss the conditions of getting a complete lifting of the
moduli space. A necessary condition for this is that the variations of the
hyperino and gaugino vanish for constant scalars which yielded eqs. (6). The
condition (ii) is equivalent to the existence of a fixed point for the Killing
vector

k = XIkI

and the complete hyper multiplet moduli space is lifted if k has a NUT fixed
point, ie. if it represents a point on MH . This excludes by the way, axionic
shift symmetries and requires a compact isometry [11]. The fixed point set
of a Killing vector field is always of even co-dimension, which is related to
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the rank of the 2-form dk calculated on the fixed point set. In fact, if the
rank is maximal, ie. det(dk) 6= 0, the fixed point set is in fact a point on the
manifold and dk parameterizes a rotation around the fixed point. Otherwise,
any zero mode of dk would parameterize a shift symmetry of the fixed point
set and hence if det(dk) = 0, the potential will have some flat directions.
Therefore, we get the following two conditions for lifting the hyper multiplet
moduli space

|k| = 0 , with : det(dk) 6= 0 . (7)

If we can find a Killing vector that satisfies both conditions, the hyper mul-
tiplet moduli space will be lifted in the vacuum. We should place a warning
here. Although, the isometries on the classical level are well understood
it is unclear whether the full quantum corrected moduli space has isome-
tries at all, which makes the moduli fixing issue obscure – at least from the
supergravity point of view. But we do not want to speculate here about
the quantum moduli space for hyper multiplets and shall instead continue
with the discussion of the second condition in (6). If the hyper scalars are
fixed, the Killing prepotentials are some fixed functions of the scalars of the
vector multiplets, ie. PI = PI(q(z)) and hence they vary over MV . If PI

would be constant, only one vacuum can occur, namely at the point where
this constant symplectic vector is a normal vector on MV [13]. But since
PI varies now, it might become normal at different points, related to the
appearance of multiple critical points. If we calculate the second covariant
derivatives on MV at this fixed point, ie. ∇Ā∇BXIPx

I and use relations
from special geometry2 we find that all these critical points are isolated –
at least as long as the metric does not degenerate. Therefore, there are no
further constraints from the vector multiplet moduli space and the crucial
relations that have to be realized are the ones in (7).

In the discussion so far we did not mention the fact that the potential
obtained in gauged supergravity is always independent of the charged scalar
field(s) and we have to ask whether this indicates some flat directions of the
potential. There are two reasons why this does not spoil our discussion so
far. On one hand, if the fixed point set is zero-dimensional (ie. a point) this
flat direction is only an artificial angular coordinate on the moduli space.
On the other hand, as we mentioned already before, the charged scalars
“can be eaten” by the vector fields giving them a mass that corresponds to
the eigenvalues of (huvk

u
I kv

J)||k|=0. So, there are no moduli related to these
scalars anymore.

2Because: ∇Ā∇BXI ∼ gĀBXI .
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3. Deformed geometry and G-structures

Supersymmetry exchanges fermionic with bosonic degrees of freedom and
in a supersymmetric vacua with trivial fermions, the fermionic variations
have to vanish [the variations of the bosonic field vanish identical for trivial
fermionic fields]. For type II supergravity, these are the gravitino δΨµ (spin
3/2) and dilatino δλ (spin 1/2) variation. On the IIB side, both Majorana-
Weyl spinors have the same chirality and can be combined into a single
(complex) Weyl spinor so that the variations can be written in the Einstein
frame as [14, 15]

IIB : δΨM =
[
DM − i

2QM + i
480F (5)ΓM

]
ε− 1

96

[
G(3) ΓM + 6G

(3)
M

]
ε? ,

δλ = i P ε? − i
24G(3)ε

(8)
with: P = 1

1−|T |2 dT , G(3) = 1√
1−|T |2 (F3−TF ?

3 ), F (5) = dC4− 1
4 (C2∧dB) and

Q = 1
1−|T |2 Im(TdT ?), T = 1+iτ

1−iτ . In these variations all indices are contracted
with Γ-matrices. The number of unbroken supersymmetries is given by the
zero modes of these equations, i.e. the number of Killing spinors for which
these variations vanish. The 10-dimensional spinor can be expanded in all
independent internal and external spinors.

Having only one internal spinor η, which is SU(3) singlet, SU(3)-structures
are given by the 2-form and a 3-form

η† γmnη = i Jmn , ηT γmnpη = iΩmnp (9)

[with 1 = η†η] where J is a symplectic form with J2 = −1 and can be used to
define (anti) holomorphic coordinates and Ω is then the holomorphic 3-form.
All other fermionic bi-linear vanish as result of identities for 6-d γ-matrices
and hence no further (regular) singlet forms can be build. If the spinor
is covariantly constant, these forms are closed and the structure group is
identical to the holonomy – if not, the holonomy is not inside SU(3) and
the space cannot be Calabi-Yau (not even complex in general). The failure
of the structure group to be the holonomy is measured by torsion classes.
Following the literature [16, 17], one introduces five classes Wi by

dJ = 3i
4 (W1Ω̄− W̄1Ω) +W3 + J ∧W4 ,

dΩ = W1J ∧ J + J ∧W2 + Ω ∧W5

(10)

with the constraints: J ∧ J ∧W2 = J ∧W3 = Ω ∧W3 = 0. Depending on
which torsion components Wi are non-zero, one can classify the geometry of
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the internal space. E.g., if only W1 6= 0 the space is called nearly Kahler,
for W2 6= 0 almost Kahler, the space is complex if W1 = W2 = 0 and it is
Kahler if only W5 6= 0.

For the 4-dimensional external space, supersymmetry requires that it has
to be, up to warping, flat or anti-deSitter and hence we make the Ansatz for
the metric

ds2 = e2A(y)
[
gµνdxµdxν + hmn(y) dymdyn

]
(11)

where gµν is either flat or AdS4, hmn is the metric of the internal space and
the warp factor depend only on the coordinates of the internal space. In the
vacuum all off-diagonal terms should vanish and the fluxes should have only
internal components or are proportional to the 4-dimensional volume form.
These constraints are required by 4-dimensional Poincaré invariance.

The type IIB side has been discussed in the literature already extensively,
see [18, 19, 20] and we want to summarize here only some aspects. Again we
admit only fluxes that are consistent with 4-dimensional Poincaré symmetry,
ie. they have components along the internal space with the only exception of
the 5-form, that has to have components along the external space; required
by the self-duality.

An important property on the IIB side is, that as long as one keeps
SU(3) structures, the vacuum has to be flat, ie. a cosmological constant can
be generated by fluxes [21]. This may indicate, that SU(3) structures al-
ways yield potentials of the no-scale form which are positive definite, but
this needs to be verified for the most general fluxes consistent with SU(3)
structures. Recall, the no-scale structure is only an approximation and cor-
rections (quantum corrections, D3-instanton corrections etc.) do not respect
this property and yield anti deSitter vacua and therefore these corrections
have to break the SU(3) down to SU(2) structures. Let us stress that we
are using here only supersymmetry and therefore our approach is valid for
classical and quantum geometry as long as at least four supercharges remain
unbroken!

Depending on the concrete form of the spinor one finds again different
solutions and the most general spinor, consistent with SU(3) structures can
be written as

ε = a [θ × η] + b? [θ? × η?] (12)

where both spinors are chiral and a and b are complex coefficients. There
are two special cases: (i) for a = b, the 10-dimensional spinor ε is Majorana-
Weyl which gives the NS-sector solution and (ii) if ab = 0 which was explored
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to a large extend in [18] and this case still allows the internal space to be
Calabi-Yau.

Interestingly it is possible to solve the Killing spinor equations without
making any assumptions [21]. The type IIB supergravity in our notation
has a local U(1) symmetry which becomes manifest if we define the phase
e2iθ = 1+iτ̄

1−iτ and write the fields in as [15]

QM = ∂Mθ − ∂M τ1
2τ2

, PM = ie2iθ ∂M τ
2τ2

, G(3) = i eiθ√
τ2

(dA(2) − τdB(2)) .

(13)
The phase θ drops out from the equations of motion as well as from the
Bianchi identities and the underlying symmetry is the local U(1) gauge trans-
formation

ε → eigε , θ → θ + g (14)

for some function g. This local symmetry is due to the coset SL(2, R)/U(1)
which is parameterized by the scalar fields of type IIB supergravity and
implies that the phase θ can be chosen freely, one can take θ = 0 (string
theory convention) or e2iθ = 1+iτ̄

1−iτ (supergravity convention) or any other
value. Recall, we are working in the Einstein frame which explains the pre-
factor τ

−1/2
2 = eφ/2 in the 3-form G3.

We can write the spinor (12) as

ε = e
A−iω

2

(
sinα [ζ ⊗ χ] + cosα [ζ? ⊗ χ?]

)
(15)

where the appearance of the warp factor is a consequence of the gravitino
variation [22, 21]. We absorbed the common phase of a and b into the spinor
(χ = eiβχ0) and this phase drops out in most of the calculations.

The 5-form flux is again parameterized by the function Z and for the
3-form flux one find the form

G =
1
4
e−2A−iωJ ∧

(
cotα Pidzi + tanα Pīdz̄i

)
+ G(prim) (16)

with the primitive part obeying: J∧G(prim) = Ω∧G(prim) = Ω̄∧G(prim) = 0;
Pi is the holomorphic part of the vector introduced in (13) and zi denote
the three coordinates parameterizing the internal space. Now, the solution
of the Killing spinor equation is given in terms of one holomorphic function

f = f(zi) (17)
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and can be written as [21]

τ = c0 + i e−φ0 |f |2 cos 2α
f sin2 α+f? cos2 α

,

e−4A = Ref
4|f |2

sin2 2α
cos 2α ,

Z = |f |2
Ref

cos2 2α
sin2 2α

tan(θ + ω) = − Imf
Ref cos 2α .

(18)

Using the local symmetry (14) we can set ω or θ to any fixed value, but
the combination θ + ω is gauge invariant. Note, supersymmetry leaves one
function (in addition to the holomorphic function f) free which has to be
fixed by the Bianchi identities or equations of motion; this is the master
function in [23]. We chose here α, which is the mixing angle between the two
spinors, but one may also take Z which can be fixed by the Bianchi identity
dF5 ∼ G ∧ Ḡ. The Calabi-Yau case is of course a special (where α ' 0),
where the axion-dilaton and the vector P are holomorphic. For the general
case, the internal geometry is a complex manifold and becomes (conformal)
Kahler if: (i) if the primitive part of G vanishes and (ii) dZ ∧dA = 0, which
can be seen as a constraint on the function f . Another special case are the
solutions describing supergravity flows, that correspond to the case where
the holomorphic function is constant f = constant. For more discussion we
refer to [21].
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